用語の解説

①アスペリティ
②応力降下量
③ライズタイム
④クリフエッジ
⑤カスケードモデル
⑥楕円クラックモデル
⑦無限長垂直横ずれ断層モデル

図一覧

- 図1:伊方3号炉設置(変更)許可申請時の基準地震動S2と検討用地震の大崎スペクトル[7]
- 図 2:1997 年基準地震動再評価時の断層モデル [54]
- 図 3:1997 年基準地震動再評価時の敷地前面海域断層群 46km に関する小林・翠川の手法および波形合成法による地震動評価 結果と基準地震動 S1[51]
- 図 4:1997 年基準地震動再評価時の敷地前面海域断層群 27,46,55,77km に関する波形合成法による地震動評価結果と基準地 震動 S2(EW 成分)[51]
- 図 5:1997 年基準地震動再評価時の敷地前面海域断層群 27,46,55,77km に関する波形合成法による地震動評価結果と基準地 震動 S2(NS 成分)[51]
- 図 6:1997 年基準地震動再評価時の敷地前面海域断層群 11,25,27,46,55,77km に関する小林・翠川の手法による地震動評価 結果と基準地震動 S2[51]
- 図 7:2001 年評価時のアスペリティを考慮した非一様断層モデルと一様断層モデルの比較 [54]
- 図 8:2003 年報告で引用された 1997 年基準地震動再評価時の断層モデルによる評価結果と 2001 年評価での小林・翠川の手法 による評価結果(1997 年評価結果とは異なる)[51,54,40]
- 図 9:2003 年報告における中央構造線断層帯 130,360km に関する地震動評価結果 [40]

図 10:2003 年報告における「断層長さがさらに長くなっても敷地での最大地震動は変わらない」とする四国電力の説明図 [40]

- 図 11: 断層幅 W を断層長さ L の 1/2 とした根拠となる Geller(1976) のグラフ [8]
- 図 12:2008 年中間報告における敷地前面海域断層群の断層モデル [42]
- 図 13:2008 年中間報告における敷地前面海域断層群の 30 度傾斜モデル [42]
- 図 14: 断層面積 S(rapture area) と地震モーメント M₀の関係 [14]
- 図 15:入倉ら [14] による L W の関係
- 図 16: 断層長さ *L*(rapture length) と地震モーメント *M*₀ の関係 [14]
- 図 17:武村 [55] による L M₀の関係
- 図 18:武村 [55] による L W の関係
- 図 19:武村 [55] による S M₀の関係
- 図 20:中央防災会議東南海,南海地震等に関する専門調査会で検討された国内活断層に対する各種地震規模推定式とその評価 結果 [2]
- 図 21: 四国電力が 2008 年中間報告で採用した楕円クラックモデル [58] と無限長垂直横ずれ断層モデル [38] による断層平均応 力降下量
- 図 22: 主な観測地震の震央分布 [42]
- 図 23:2008 年中間報告における断層モデルの手法による基準地震動 Ss と検討用地震 (水平方向)[42]
- 図 24:2008 年中間報告における断層モデルの手法による基準地震動 Ss と検討用地震 (鉛直方向)[42]
- 図 25:2008 年中間報告で設定された基準地震動 Ss(水平方向)[42]
- 図 26:2008 年中間報告で設定された基準地震動 Ss(鉛直方向)[42]
- 図 27:2008 年中間報告における中央構造線断層帯断層モデル図 (42km, 130km, 360km モデル)[42]
- 図 28:2008 年中間報告における耐専スペクトルと距離減衰式による応答スペクトル (水平方向)[42]
- 図 29: Zhao et al.(2006)の距離減衰式の元になった地震観測データ [44]
- 図 30: 耐専スペクトルの元になった地震観測データと適用限界
- 図 31:新潟県中越沖地震の柏崎・刈羽原発での解放基盤表面地震動はぎとり波と耐専スペクトル [56]
- 図 32:2008 年中間報告における耐専スペクトルと基準地震動 Ss[42]
- 図 33:2013 年設置変更許可申請書で四国電力が考慮した中央構造線断層帯 [46,47]
- 図 34:2013 年申請時の基本ケース (54km, 90 度) に対する耐専スペクトルとその他の距離減衰式による応答スペクトル等との 比較
- 図 35:2013 年申請時の不確かさ考慮ケース (54km, 30 度, アスペリティ深さ中位配置) に対する耐専スペクトルとその他の距 離減衰式による応答スペクトル等との比較
- 図 36:2000 年鳥取県西部地震 (M7.3) の賀祥ダム (X_{eq} = 6km) での地震観測記録と耐専スペクトルの比較
- 図 37: 宍道断層 (M7.1, X_{eq} = 9.0km)の耐専スペクトル (【参考】として追記) と断層モデル (ケース 2: M7.1, 長さ 22km, 幅 15km) による断層周辺極近傍観測点での評価結果の比較 [3]
- 図 38:2013 年申請時の基準地震動 Ss-1H と検討用地震の耐専スペクトル,その他距離減衰式による応答スペクトル(水平 NS 方向)
- 図 39:2013 年申請時の基準地震動 Ss-1V と検討用地震の耐専スペクトル,その他距離減衰式による応答スペクトル(鉛直 UD 方向)

- 図 40:2013 年申請時の断層モデル経験的グリーン関数法による地震動評価結果
- 図 41:2013 年申請時の断層モデル統計的グリーン関数法による地震動評価結果
- 図 42:2013 年申請時に断層モデルの要素地震として使われた安芸灘地震観測波
- 図 43:2013 年申請時の基準地震動 Ss(水平方向)
- 図 44:2013 年申請時の基準地震動 Ss(鉛直方向)
- 図 45: 壇ら (2011)[4] および Fujii-Matsu'ura (2000)[6] と他の S Mo 関係式との関係
- 図 46: Irie et al.(2010)[19] による動力学的断層破壊シミュレーション結果
- 図 47:岩手・宮城内陸地震 M7.2 で観測された地表地震観測記録の応答スペクトル
- 図 48:2008 年岩手・宮城内陸地震の地下地震観測波と伊方の基準地震動 Ss-1H
- 図 49:国内外の内陸地殻内地震による震源近傍の観測記録 (M6.0~8.1, X_{eq} = 6 ~ 33km, 水平 51 記録, 上下 14 記録) の耐専スペクトル (内陸補正有) との残差 (バラツキ)[57]
- 図 50:直達 S 波 (S_g), 屈折波 (S^{*} 波と Sn 波)[33]

表一覧

- 表1:内陸地震の震源モデルにおけるライズタイム t_r ,破壊伝播速度 V_r ,アスペリティの幅 W_a ,背景領域の幅 W_b ,係数 $\alpha = t_r V_r / W_{a \text{ or } b} [27]$
- 表 2:2008 年岩手・宮城内陸地震 M7.2 による強震観測値(加速度 [gal],速度 [cm/s])
- 表3: 典型的な大陸地殻・海洋地殻の構造[13]
- 表 4: 主な原子力発電所における原子炉建屋の固有周期(水平南北 NS 方向, 東西 EW 方向)[sec]
- 表5:原子力発電所の主要な建屋・構築物および機器・配管類の固有周期の典型例 [sec]
- 表 6:伊方原子力発電所 1~3 号機の主要な建屋・構築物および機器・配管の固有周期 [sec][41]
- 表7:四国電力等によるこれまでに評価された中央構造線断層帯の断層パラメータ(その1)
- 表8:四国電力等によるこれまでに評価された中央構造線断層帯の断層パラメータ(その2)
- 表9:四国電力等によるこれまでに評価された中央構造線断層帯の断層パラメータ(その3)
- 表 10:中央構造線断層帯における「敷地前面海域の断層群(約 42km)」の断層パラメータ
- 表11:中央構造線断層帯における「敷地前面海域の断層群(約42km:傾斜角30度)」の断層パラメータ
- 表 12:中央構造線断層帯における「伊予セグメント」の断層パラメータ
- 表 13:中央構造線断層帯における「川上セグメント」の断層パラメータ
- 表14:中央構造線断層帯の「石鎚山脈北縁西部-伊予灘区間(約130km)」の断層パラメータ
- 表15:中央構造線断層帯の「石鎚山脈北縁西部-伊予灘区間(約130km)」のアスペリティ評価
- 表16:レシピ修正モデルによる「敷地前面海域の断層群」と「伊予セグメント」の断層パラメータ
- 表 17:レシピ修正モデルによる「川上セグメント」と「断層帯全長 (約 130km)」の断層パラメータ
- 表18:レシピ修正モデルによる中央構造線断層帯の「断層帯全長(約130km)」のアスペリティ評価
- 表 19:中央構造線断層帯の「石鎚山脈北縁西部-伊予灘区間(約130km)」の断層パラメータ
- 表 20:中央構造線断層帯の「石鎚山脈北縁西部-伊予灘区間(約130km)」のアスペリティ評価
- 表 21:中央構造線断層帯における「敷地前面海域の断層群(約 42km)」の断層長さを変更したケース
- 表 22: Somerville et al.(1998)[53] が解析に用いた断層モデルのデータ
- 表 23:武村 (1998)[55] が解析に用いた断層モデルのデータ(地震名等は原典 [38] にならい, Δσの値も記載した)
- 表 24 : Fujii-Matsu'ura.(2000)[6] が解析に用いた断層モデルのデータ
- 表 25: 壇ら (2011)[4] が解析に用いた断層モデルのデータ
- 表 26: 壇ら (2011)[4] の方法に基づいて求めた震源断層モデルの面積 S_{model} , 断層長さ L_{model} , アスペクト比 $L_{\text{model}}/W_{\text{max}}$ ($W_{\text{max}} = 15 \text{km}$) およびアスペリティ平均動的応力降下量 $\Delta \sigma_a^{\#}$

()アスペリティ

震源断層面内で非常に強く固着している領域を 「アスペリティ」という.震源断層面内の他の部分 (背景領域)と比べて,アスペリティには非常に大 きな歪みエネルギーが蓄積されており,断層運動 の際(地震時)には,アスペリティで非常に大き なエネルギーが放出され,大きくずれ動き,強い 地震動が発生する.

②応力降下量

断層運動が発生する前のせん断応力(初期応力) と断層運動終了後のせん断応力(最終応力)との 差を「応力降下量(または静的応力降下量)」とい う.断層運動中の動摩擦状態のせん断応力と初期 応力との差を「動的応力降下量」として区別する ことがある.

③ライズタイム

断層運動の際の破壊面の各部分におけるすべり 継続時間(すべり開始から終了までの時間)を「ラ イズタイム(立ち上がり時間)」という.

④クリフエッジ

ストレステストにおいて,原子力発電所などの 建屋・構築物や機器・配管類などの施設が耐える ことのできる限界の地震動の大きさや津波の高さ を「クリフエッジ」という.

地震動の場合,通常は「基準地震動 Ss の 1.5 倍」 とかで表すが,その意味するところは,解放基盤 表面で定義される地震動の最大加速度 570 ガルが 1.5 倍の 855 ガルを超えると重大事故につながる可 能性があることを示すだけではない.基準地震動 Ss が各施設に及ぼす揺れの最大値(応答加速度や 応答速度などという)を固有周期ごとにまとめて 表したグラフを「応答スペクトル」というが,この 応答スペクトルを 1.5 倍にして得られる応答加速 度等の値を超えるような地震動が発生すると,そ の固有周期をもつ施設が破壊されたり機能しなく なったりして重大事故に至ることを示す.つまり, 855 ガル以下の地震動であっても,施設の応答加 速度が基準地震動による応答スペクトルの 1.5 倍 ことを意味するのである.伊方3号に則した具体 例は本文の注3を参照されたい.

ちなみに,解放基盤表面での最大加速度 570 ガ ルは,応答スペクトルでいえば,周期 0.02sec での 応答加速度が 570 ガルであることにほぼ等しいが, 原発の重要な施設の固有周期は 0.03~0.5sec であ り,この短周期帯において,地震動による応答加 速度や応答速度が基準地震動 Ss による応答スペ クトルの値をどの程度超えるかが最も重要なので ある.

⑤カスケードモデル

長大な断層がいくつかの断層群によって構成さ れ,それらが連動して動く場合,その地震規模が それらの断層群一つ一つが動いた場合の地震規模 のたし合わせになるようなモデルを「カスケード モデル」という.

断層モデルでは, 断層が未飽和の場合(断層幅 が地震発生層下端で定められる最大断層幅より短 い場合), 地震規模を表す地震モーメントは, 断層 面積の1.5 乗に比例し, 断層幅が最大断層幅に等 しく一定になる飽和断層では, 断層面積の2 乗に 比例して大きくなる.しかし, 断層長さが100km 以上など長大な断層では, 断層面積に比例するよ うになる.この最後の場合が, カスケードモデル に対応すると言われている.

⑥楕円クラックモデル

震源断層やアスペリティをその面積に等しい円 で近似的に表す場合を「円形クラックモデル」,楕 円で表す場合を「楕円クラックモデル」という.

⑦無限長垂直横ずれ断層モデル

震源断層が「無限に長い」状態を仮想し,傾斜 角が90度の「垂直」で,断層運動が「横ずれ」で ある場合の「断層モデル」を「無限長垂直横ずれ 断層モデル」という.断層長さが非常に長大な断 層を近似的に表す際に用いられる.

	G	伊子健汉の子和西地界の地震	(101 7 74)	$\Lambda = 00 \text{ km}$
	5	日向灘地域の地震	$(M = 7 \frac{3}{4})$	$\Delta = 135$ km)
	6	南海道沖の地域の地震	(M = 8.5 .	$\Delta = 190$ km)
	D	四国内陸部の地域の地震	$(M = 7 \frac{3}{4})$	$\Delta = 110$ km)
· · ·	(8)	直下地震	(M = 6.5)	X = 10 km)

図 1: 伊方3号炉設置(変更)許可申請時の基準地震動S2と検討用地震の大崎スペクトル[7]

図 2: 1997 年基準地震動再評価時の断層モデル [54]

図 3: 1997 年基準地震動再評価時の敷地前面海域断層群 46km に関する小林・翠川の手法および波形合成 法による地震動評価結果と基準地震動 S1[51]

図 4: 1997 年基準地震動再評価時の敷地前面海域断層群 27, 46, 55, 77km に関する波形合成法による地震 動評価結果と基準地震動 S2(EW 成分)[51]

図 5: 1997 年基準地震動再評価時の敷地前面海域断層群 27,46,55,77km に関する波形合成法による地震 動評価結果と基準地震動 S2(NS 成分)[51]

図 6: 1997 年基準地震動再評価時の敷地前面海域断層群 11, 25, 27, 46, 55, 77km に関する小林・翠川の手 法による地震動評価結果と基準地震動 S2[51]

図 7: 2001 年評価時のアスペリティを考慮した非一様断層モデルと一様断層モデルの比較 [54]

図 8: 2003 年報告で引用された 1997 年基準地震動再評価時の断層モデルによる評価結果と 2001 年評価 での小林・翠川の手法による評価結果 (1997 年評価結果とは異なる)[51, 54, 40]

図 9: 2003 年報告における中央構造線断層帯 130, 360km に関する地震動評価結果 [40]

図 10: 2003 年報告における「断層長さがさらに長くなっても敷地での最大地震動は変わらない」とする 四国電力の説明図 [40]

図 11: 断層幅 W を断層長さ L の 1/2 とした根拠となる Geller(1976) のグラフ (。は内陸地殻内地震, • は海洋 プレート間地震) [8]

図 12: 2008 年中間報告における敷地前面海域断層群の断層モデル(上:アスペリティ中央配置の基本モデル,下: アスペリティ上端配置の不確かさ考慮モデル)[42]

図 13: 2008 年中間報告における敷地前面海域断層群の 30 度傾斜モデル (上:アスペリティ中央配置の基本モデル,下:アスペリティ上端配置の不確かさ考慮モデル)[42]

図 14: 断層面積 S(rapture area) と地震モーメント M_0 の関係 [14] (破線がレシピの式に相当,入倉らは L = 20km で $W_{max} = 16.6$ km に達すると仮定し,分岐点を $M_0 = 7.5 \cdot 10^{25}$ dyn·cm としている. 一点鎖線は 武村 (1998) による $W_{max} = 13$ km とした関係式で分岐点の M_0 は同じ)

図 15: 入倉ら [14] による *L* - *W* の関係 (oは Well et al.(1994)(*M*_{0t} < *M*₀), ●は Somerville et al.(1999) および Miyakoshi(2001), 灰色のoは低角逆断層のデータ)

図 16: 断層長さ L(rapture length) と地震モーメント M₀の関係 [14] (薄い線が松田式に相当)

図 17: 武村 [55] による L – M₀の関係

図 18: 武村 [55] による L – Wの関係

図 19: 武村 [55] による S – M₀の関係

図 20: 中央防災会議東南海,南海地震等に関する専門調査会で検討された国内活断層に対する各種地震 規模推定式とその評価結果 [2]

図 21: 四国電力が 2008 年中間報告で採用した楕円クラックモデル [58] と無限長垂直横ずれ断層モデル [38] による断層平均応力降下量(四国電力の資料 [43] に引用者が加筆)

図 22: 主な観測地震の震央分布(4と9のスラブ内地震がそれぞれ1997・2003年報告と2008・2013年報告で断層モデルの要素地震として使われている)[42]

図 23: 2008 年中間報告における断層モデルの手法による基準地震動 Ss と検討用地震 (水平方向)[42]

図 24: 2008 年中間報告における断層モデルの手法による基準地震動 Ss と検討用地震 (鉛直方向)[42]

図 25: 2008 年中間報告で設定された基準地震動 Ss(水平方向)[42]

図 26: 2008 年中間報告で設定された基準地震動 Ss(鉛直方向)[42]

図 27: 2008 年中間報告における中央構造線断層帯断層モデル図 (42km, 130km, 360km モデル)[42]

図 28: 2008 年中間報告における耐専スペクトルと距離減衰式による応答スペクトル (水平方向)[42]

図 29: Zhao et al.(2006)の距離減衰式の元になった地震観測データ [44]

図 30: 耐専スペクトルの元になった地震観測データと適用限界

図 31: 新潟県中越沖地震の柏崎・刈羽原発での解放基盤表面地震動はぎとり波と耐専スペクトル [56]

図 32: 2008 年中間報告における耐専スペクトルと基準地震動 Ss[42]

図 33: 2013 年設置変更許可申請書で四国電力が考慮した中央構造線断層帯 [46, 47]

図 34: 2013 年申請時の基本ケース (54km, 90 度) に対する耐専スペクトルとその他の距離減衰式による 応答スペクトル等との比較

図 35: 2013 年申請時の不確かさ考慮ケース (54km, 30 度, アスペリティ深さ中位配置) に対する耐専スペクトルとその他の距離減衰式による応答スペクトル等との比較

図 36: 2000 年鳥取県西部地震 (M7.3) の賀祥ダム (X_{eq} = 6km) での地震観測記録と耐専スペクトルの比較

図 37: 宍道断層 (M7.1, X_{eq} = 9.0km)の耐専スペクトル (【参考】として追記) と断層モデル(ケース2: M7.1, 長さ 22km, 幅 15km)による断層周辺極近傍観測点での評価結果の比較 [3]

図 38: 2013 年申請時の基準地震動 Ss-1H と検討用地震の耐専スペクトル,その他距離減衰式による応答 スペクトル (水平 NS 方向)

図 39: 2013 年申請時の基準地震動 Ss-1V と検討用地震の耐専スペクトル,その他距離減衰式による応答 スペクトル(鉛直 UD 方向)

図 40: 2013 年申請時の断層モデル経験的グリーン関数法による地震動評価結果

図 41: 2013 年申請時の断層モデル統計的グリーン関数法による地震動評価結果

図 42: 2013 年申請時に断層モデルの要素地震として使われた安芸灘地震観測波

図 43: 2013 年申請時の基準地震動 Ss(水平方向)

図 44: 2013 年申請時の基準地震動 Ss(鉛直方向)

図 45: 壇ら (2011)[4] および Fujii-Matsu'ura (2000)[6] と他の S – M_o 関係式との関係

図 46: Irie et al.(2010)[19] による動力学的断層破壊シミュレーション結果

図 47: 岩手・宮城内陸地震 M7.2 で観測された地表地震観測記録の応答スペクトル (赤:一関西 IWTH25,青: 東成瀬 AKTH04,緑: IWTH26,黒: MYG004,紫: ATK023)

図 48: 2008 年岩手・宮城内陸地震の地下地震観測波と伊方の基準地震動 Ss-1H

図 49: 国内外の内陸地殻内地震による震源近傍の観測記録 (M6.0~8.1, X_{eq} = 6 ~ 33km, 水平 51 記録, 上下 14 記録)の耐専スペクトル (内陸補正有) との残差 (バラツキ)[57] (細線:各地震観測記録に対する残渣,太い赤実線:残差の平均,やや太い青実線:平均からの「倍半分」の差)

図 50: 直達 S 波 (Sg), 屈折波 (S* 波と Sn 波)[33]

表 1: 内陸	地震の震源モデルにお	けるライズタイム t_r ,	破壊伝播速度 V_r ,	アスペリティ	の幅 W_a ,	背景領
域の幅 W_b	,係数 $\alpha = t_r V_r / W_a$ or	b[27](能登半島地震	と新潟県中越沖地震	寝は文献 [28][1	6] から追加	加した)

1995年兵庫県南部地震(山田・他, 1999)							
	t_r [sec]	V_r [km/s]	W_a or W_b [km]	α			
アスペリティ1	0.4	2.8	4.8	0.23			
アスペリティ2	0.5	2.8	6.4	0.22			
アスペリティ3	0.6	2.8	11.2	0.15			
アスペリティ4	0.6	2.8	8.0	0.21			
1997年3月6	の鹿児島県	具北西部地震	ミ (三宅・他, 1999))			
アスペリティ	0.5	2.5	6	0.21			
1997年5月0	の鹿児島岬	具北西部地震	ミ (三宅・他, 1999))			
アスペリティ	0.5	2.5	3	0.38			
2000年	烏取県西	部地震(池	田・他,2002)				
アスペリティ1	0.6	2.5	4.8	0.31			
アスペリティ2	0.6	3.0	4.8	0.38			
背景領域	2.04	2.5	16.8	0.30			
2007 年	能登半島	地震(釜江)	5,2007) [28]				
アスペリティ1	0.6	2.5	7.2	0.21			
アスペリティ2	0.5	2.5	4.8	0.26			
アスペリティ3	0.5	2.5	4.8	0.26			
2007 年新潟県中越沖地震(入倉ら, 2007)[16]							
アスペリティ1	0.5	2.7	5.5	0.25			
アスペリティ2	0.5	2.7	5.5	0.25			
アスペリティ3	0.45	2.7	5.04	0.24			

表 2: 2008 年岩手・宮城内陸地震 M7.2 による強震観測値(加速度 [gal],速度 [cm/s])

観測点	3 成分合成	東西	南北	上下
一関西 (地表)	4022 gal	1143	1433	3866
(地下)	1078 gal	1036	748	640
一関西 (地表)	100.1cm/s	71.0	61.5	84.7
(地下)	73.2cm/s	42.2	37.2	68.5

地殼種類	層	深さ [km]	密度 [g/cm ³]	Vp [km/s]	Vs [km/s]
	上部地殻	$0\sim 20$	2.72	5.80	3.45
大陸	下部地殻	$20 \sim 35$	2.92	6.50	3.75
	マントル	$35 \sim$	3.32	8.02	4.69
	海	$0 \sim 4$	1.03	1.50	0.0
海洋	堆積層	$4\sim 5$	1.5	2.00	1.00
	地殻	$5 \sim 11$	2.85	6.40	3.70
	マントル	$11 \sim$	3.32	7.90	4.55

表 3: 典型的な大陸地殻・海洋地殻の構造 [13]

表 4: 主な原子力発電所における原子炉建屋の固有周期(水平南北 NS 方向, 東西 EW 方向) [sec]

-	PWR 原発	NS	EW	BWR 原発	NS	EW
-	泊1	0.191	0.226	女川1	0.244	0.234
	泊 2	0.191	0.226	女川 2	0.207	0.203
	美浜 1	0.250	0.250	福島第二1	0.424	0.423
	美浜 2	0.240	0.240	福島第二2	0.458	0.460
	美浜 3	0.278	0.280	福島第二3	0.468	0.473
	高浜1	0.293	0.293	福島第二4	0.469	0.472
	高浜 2	0.293	0.293	柏崎刈羽1	0.441	0.441
	高浜 3	0.226	0.223	柏崎刈羽2	0.431	0.431
	大飯 1	0.185	0.185	柏崎刈羽3	0.433	0.434
	大飯 2	0.185	0.185	柏崎刈羽4	0.467	0.467
	大飯 3	0.212	0.214	柏崎刈羽5	0.402	0.402
	大飯 4	0.214	0.214	柏崎刈羽6	0.444	0.433
	伊方1	0.236	0.236	柏崎刈羽7	0.443	0.432
	伊方2	0.184	0.184	浜岡 1	0.250	0.247
	伊方3	0.211	0.193	浜岡 2	0.257	0.256
	玄海1	0.234	0.234	浜岡 3	0.278	0.276
	玄海 2	0.265	0.265	浜岡 4	0.279	0.278
	玄海3	0.221	0.230	志賀 1	0.201	0.203
	玄海 4	0.214	0.216	島根 1	0.250	0.240
	川内1	0.304	0.304	島根 2	0.229	0.211
	川内 2	0.298	0.298	東海第二	0.451	0.452
	敦賀 2	0.215	0.216	敦賀 1	0.213	0.213

表 5: 原子力発電所の主要な建屋・構築物および機器・配管類の固有周期の典型例 [sec]

PWR(例)の代表機器名	固有周期
原子炉容器	0.055
使用済燃料ラック	0.042
制御棒駆動装置	0.063
ほう酸タンク	0.078
余熱除去冷却器	0.037
海水ホンフ	0.050
原子炉補機冷却水冷却器	0.041
格納容器スプレイ冷却器	0.037
原子炉格納容器(PCCV)	0.214
BWR(例)の代表機器名	固有周期
原子炉圧力容器	0.085
使用済燃料貯蔵ラック	0.092
制御棒駆動系水圧制御ユニット	0.043
高圧炉心注水系ポンプ	0.036
残留熱除去系熱交換器	0.032
残留熱除去系ホンプ	0.035
原子炉補機冷却水系熱交換器	0.036
原子炉補機冷却海水ポンプ	0.144
主蒸気逃がし安全弁自動減圧機能用アキュムレータ	0.031
可燃性ガス濃度制御系再結合装置	0.049
原子炉格納容器	0.444

表 6: 伊方原子力発電所 1~3 号機の主要な建屋・構築物および機器・配管の固有周期 [sec][41]

対象設備(項目)	1 号機	2 号機	3号機
原子炉容器(支持構造物)	0.065	0.063	0.053
蒸気発生器 (支持構造物)	0.127	0.066	0.112
炉内構造物(炉心そう)	0.065	0.063	0.053
一次冷却材管(本体)	0.127	0.066	0.112
余熱除去ポンプ(基礎ボルト)	≤ 0.05	≤ 0.05	≤ 0.05
余熱除去設備配管(本体)	0.043	0.083	0.085
原子炉格納容器(本体)	0.137	0.153	0.163
原子炉建屋(外周壁)	0.239	0.188	0.193
制御棒クラスタ駆動装置	0.061	0.061	0.063
制御棒クラスタ案内管	0.041	0.040	0.035
燃料集合体	0.357	0.333	0.270

表 7: 四国電力等によるこれまでに評価された中央構造線断層帯の断層パラメータ(その1)

	1984 年設置許可申請時と 1997 年基準地震動再評価時のモデル [5					
断層パラメータ	(小林・翠川の手法により、11.0, 25.0, 27.0, 46.0, 55.0, 77.0kr					
	の6通りについて評価しているが4通りのみ記載する)					
傾斜角		90	度			
断層長さ L	25.0 km	46.0 km	55.0 km	77.0 km		
断層幅 $W = L/2^{*1}$	12.5 km	23.0 km	27.5 km	30.0 km		
断層面積 S	312.5 km ²	1058.0 km^2	1512.5 km^2	2310.0 km^2		
断層上端深さ	2.0 km					
破壞開始点	北東端1箇所					
破壊伝播方式		一方向	可伝播			
地震モーメント M ₀ *1	$2.63 \times 10^{19} \text{ N} \cdot \text{m}$	1.52×10^{20}	2.54×10^{20}	5.82×10^{20}		
()内は断層モデルレシピによる * ²	(5.25×10^{18})	(6.23×10^{19})	(1.27×10^{20})	(2.97×10^{20})		
マグニチュード * ³	$M7.4, M_{w}6.9$	M8.1, M _w 7.4	M8.3, M _w 7.5	$M8.6, M_w7.8$		
() 内は断層モデルレシピによる ²	$(M6.8, M_w6.4)$	$(M7.8, M_w7.1)$	$(M8.0, M_w7.3)$	$(M8.3, M_w7.6)$		
剛性率 μ		4.0×10	$^{10} \text{ N/m}^2$			
平均すべり量 D ^{*4}	210 cm	360 cm	420 cm	630 cm		
()内は断層長さから得た M	(M7.2)	(M7.6)	(M7.7)	(M8.0)		
平均破壊伝播速度 V _r	2.5 km/s					
ライズタイム t_r *5	2.1 sec	3.8 sec	4.6 sec	5.6 sec		

- *1:四国電力は、1984 年伊方 3 号炉設置 (変更)許可申請および 1997 年基準地震動再評価においては、断層面積から地震モーメントを求める現在の断層モデルによる方法ではなく、当時の小林・翠川の手法によって求めている.すなわち、平均すべり量を松田 (1975)の式 log₁₀ D = 0.6M-4.0 で求め、地震モーメントを M_o = µDS で求めている.また、断層幅を Geller(1976)[8]の式 W = L/2 で求めているため、断層面積が大きくなりすぎている.これらのため、地震モーメントの 値は括弧内に示した現在の断層モデルのレシピによる値よりかなり大きくなっている.
- *2:現在の断層モデルレシピによる地震モーメントは、断層面積 S と地震モーメント M_o の関係式 $S = 2.23 \times 10^{-15} M_0^{2/3}$ ($M_o \leq 7.5 \times 10^{18}$ N·m); $4.24 \times 10^{-11} M_0^{1/2}$ ($M_o \geq 7.5 \times 10^{18}$ N·m),より得られる.ただし、この式中の M_0 の単位は dyn·cm であり、1N·m= 10^7 dyn·cm の関係がある.上表の括弧内の地震モーメントの値は、表中の断層面積より、この方 法を用いて求めた.
- *3:気象庁マグニチュード M の値は、M= $(\log_{10} M_o 10.72)/1.17$ より求めた. モーメントマグニチュード M_w の値は、四 国電力が M_w = $(2/3)(\log_{10} M_o - 9.1)$ より求めている (ただし、ここでの M_o の単位はいずれの場合も N·m である).
- *4:四国電力は「*1」で示したように,断層長さ L から松田式 $\log_{10} L = 0.6M 2.9$ で気象庁マグニチュード M を求め,平 均すべり量を $\log_{10} D = 0.6M - 4.0$ で求めている.参考のため,断層長さから求めた気象庁マグニチュードの値を括弧 内に示しておいた.
- *5:四国電力は、ライズタイムを Geller(1976)[8] の式 $t_r = 16S^{0.5}/(7\pi^{1.5}V_r)$ で求めている.

表 8: 四国電力等によるこれまでに評価された中央構造線断層帯の断層パラメータ(その2)

	1997 年基準地震動再評価時の一様断層モデル(アスペリティ無)						
断層パラメータ	(27.0, 46.0, 55	(27.0, 46.0, 55.0, 77.0km の 4 通りだけで 25km は無)[51, 7, 54]					
傾斜角		90	度				
断層長さ L	27.0 km	46.0 km	55.0 km	77.0 km			
断層幅 $W = L/2^{*1}$	13.5 km	23.0 km	27.5 km	30.0 km			
断層面積 S	364.5 km^2	1058.0 km^2	1512.5 km^2	2310.0 km^2			
断層上端深さ		2.0	km				
破壞開始点		北東端	1 箇所				
破壊伝播方式		同心円状	(放射状)				
	$3.06 \times 10^{19} \text{ N} \cdot \text{m}$	1.52×10^{20}	2.54×10^{20}	5.82×10^{20}			
() 内は断層モデルレシピによる * ²	(7.39×10^{18})	(6.23×10^{19})	(1.27×10^{20})	(2.97×10^{20})			
マグニチュード*3	M7.5, M _w 6.9	$M8.1, M_w7.4$	M8.3, M _w 7.5	$M8.6, M_w7.8$			
()内は断層モデルレシピによる ²	$(M7.0, M_w 6.5)$	$(M7.8, M_w7.1)$	$(M8.0, M_w7.3)$	$(M8.3, M_w7.6)$			
剛性率 μ		4.0×10	$^{10} \text{ N/m}^2$				
平均すべり量 D ^{*4}	210 cm	360 cm	420 cm	630 cm			
()内は断層長さから得た M	(M7.2)	(M7.6)	(M7.7)	(M8.0)			
平均応力降下量 $\Delta\sigma$ *5	5.0 MPa						
平均破壊伝播速度 Vr		2.5 km/s					
ライズタイム t_r *6	2.2 sec	3.8 sec	4.6 sec	5.6 sec			

*1:四国電力は,1997年基準地震動再評価では,表8の小林・翠川の手法の他に,本表のようなアスペリティを考慮しないー 様断層モデルを対象とした波形合成法による地震動評価も行っている.その際の断層パラメータ設定法は小林・翠川の手 法による設定法をそのまま踏襲している.すなわち,平均すべり量を松田(1975)の式 log₁₀ D = 0.6M-4.0 で求め,地震 モーメントを M_o = µDS で求めている.また,断層幅を Geler(1976)[8]の式 W = L/2 で求めているため,断層面積が 大きくなりすぎている.これらのため,地震モーメントの値は括弧内に示した現在の断層モデルのレシピによる値よりか なり大きくなっている.また,波形合成の際には震源断層面を格子状に切った各要素断面で要素地震波が発生すると想定 するが,その要素地震として 1988 年 7 月 29 日に発生した M5.1 の伊予灘地震(図 22 の No.4)を用いている.この地震は 敷地前面海域断層群の断層面上で発生したものではなく,震央距離 28km,深さ 53km で起きた海洋プレート内地震(スラ ブ内地震)であり,スラブ内地震では応力降下量が大きく,短周期地震波が大きい.現に,この地震の応力降下量は 20 MPa と評価されており(表9の 2001年非一様断層モデルの要素地震と同じ),想定震源断層の断層平均応力降下量の4倍 と大きい.ところが,波形合成の際,この比に応じて要素地震波が小さく設定されるため,地震動が過小評価されるおそ れがある.

- *2:現在の断層モデルレシピによる地震モーメントは、断層面積 S と地震モーメント M_o の関係式 $S = 2.23 \times 10^{-15} M_0^{2/3}$ ($M_o \leq 7.5 \times 10^{18}$ N·m); $4.24 \times 10^{-11} M_0^{1/2}$ ($M_o \geq 7.5 \times 10^{18}$ N·m),より得られる.ただし、この式中の M_0 の単位は dyn·cm であり、1N·m= 10^7 dyn·cm の関係がある.上表の括弧内の地震モーメントの値は、表中の断層面積より、この方 法を用いて求めた.
- *3:気象庁マグニチュード M の値は、M= $(\log_{10} M_o 10.72)/1.17$ より求めた. モーメントマグニチュード M_w の値は、四 国電力が M_w = $(2/3)(\log_{10} M_o - 9.1)$ より求めている (ただし、ここでの M_o の単位はいずれの場合も N·m である).
- *4:四国電力は「*1」で示したように、断層長さ L から松田式 $\log_{10} L = 0.6M 2.9$ で気象庁マグニチュード M を求め、平 均すべり量を $\log_{10} D = 0.6M - 4.0$ で求めている.参考のため、断層長さから求めた気象庁マグニチュードの値を括弧 内に示しておいた.
- *5:四国電力は,佐藤 (1989)[38] が日本の全地震データから平均応力降下量を約 5.0MPa と導いていることから,アスペリティ無の一様断層モデルにおける平均応力降下量を $\Delta \sigma = 5.0$ MPa と設定している.ちなみに,佐藤 (1989) は,海洋プレート間地震,海洋プレート内地震および内陸地殻内地震のすべてを含む国内の地震データを用いて, $\log_{10} S = (2/3) \log_{10} M_o 14.9$ または $S = 1.26 \times 10^{-15} M_o^{2/3} (M_o$ の単位は dyn·cm)を導き, $\Delta \sigma = 7\pi^{3/2} M_o / (16S^{3/2})$ にこれらの関係を代入して, $\Delta \sigma \simeq 5.0 MPa$ を導出している ([38], pp.82-90).
- *6:四国電力は、ライズタイムを Geller(1976)[8] の式 $t_r = 16S^{0.5}/(7\pi^{1.5}V_r)$ で求めている.

表 9: 四国電力等によるこれまでに評価された中央構造線断層帯の断層パラメータ(その3)

		2001 年非一様断属	暑モデル [7, 54]	2003 年長期評価対応モデル [40]		
	断層パラメータ	波形合成法:4	6km モデル	伊予灘中央構造約	湶断層帯 130km	
		想定地震	要素地震*1	波形合成法	小林・翠川の手法	
	傾斜角		90 度	۴٤		
	断層長さ <i>L</i>	46 km		130	km	
	断層幅 W	18 km *2	_	25 1	ĸm	
	断層面積 S	828.0 km^2	_	3250	km ²	
	断層上端深さ	2.0 km	_	2.0	km	
	破壞開始点	北東端1箇所	_	北東端	1箇所	
	破壊伝播方式	同心円状 (放射状)		同心円状	(放射状)	
地	震モーメント M ₀	2.57×10^{19} N·m *3	5.63×10^{15}	$3.25 imes 10^2$	²⁰ N·m *7	
()内は	*断層モデルレシピによる	(3.81×10^{19})	$\rightarrow 7.04 \times 10^{17}$	$(5.87 \times$	(10 ²⁰)	
	マグニチュード	$M7.4, M_{w}6.9$	M5.1	_		
() 内は断層モデルレシピによる		$(M7.6, M_w7.0)$		(M8.6,	M _w 7.8)	
	剛性率 μ	$4.0 \times 10^{10} \text{ N/m}^2$	$4.0 imes 10^{10} \text{ N/m}^2$	$4.0 \times 10^{\circ}$	10 N/m^2	
	平均すべり量 D	99 cm *4		250 cm *7		
平	均応力降下量 $\Delta\sigma$	5.0 MPa *5	20 MPa	2.55 MPa *8		
平	均破壊伝播速度 Vr	2.5 km/s		2.5 k	m/s	
	ライズタイム t_r	_	_	_	3.5 sec	
	短周期レベル A					
\sim	地震モーメント M _{0a}	1.86×10^{19} N·m *3	_	$1.43\times 10^{20}~{\rm N}{\cdot}{\rm m}$	_	
テ	面積 Sa	243.0 km ² *6	_	715 km ² * ⁸	_	
КŚ.	平均すべり量 <i>D</i> a	191 cm *4	_	500 cm *7	_	
\sim	応力降下量 $\Delta \sigma_a$	10.0 MPa *5		11.6 MPa *8		
157	地震モーメント M _{0b}	7.10×10^{18} N·m *3	_	$1.82 \times 10^{20} \text{ N} \cdot \text{m}$	_	
通道	面積 S_b	$\overline{585.0 \text{ km}^2}$		2535 km^2		
影	平均すべり量 <i>D</i> _b	30 cm *4		179.5 cm	_	
Щ.	実効応力 σ_b	1.5 MPa *5		2.3 MPa	_	

- *1:波形合成法で要素地震として用いた地震は 1988 年 7 月 29 日に北緯 33.678, 東経 132.508, 震源深さ 53km で生じたスラ ブ内地震 (M5.1) であり,伊方原発との震央距離は 28.0km,震源距離は 59.8km である. この要素地震は波形合成法で用 いられているが,本来は震源断層面内で起きた小地震による地震観測波形を用いなければ伝播経路特性を正しく反映させ ることができない.そればかりか,スラブ内地震と内陸地殻内地震とでは応力降下量が上表のように 4 倍大きいため,波 形合成の際に地震波の振幅が小さく評価されてしまう.この要素地震を内陸地殻内地震の波形合成に用いるのは妥当とは いえない.要素地震の M_o は観測値を 5³ 倍して 7.04 × 10¹⁷N·m とし,経験的グリーン関数の M_o として用いている.
- *2: 断層幅は, 一様断層モデルの場合に用いた W = L/2 ではなく, 「P 波速度構造から上部地殻 (厚さ 18km) を地震発生層とし」([54], p.67), W = 18km としている.
- *3: Somerville et al.(1993)[52] が北西アメリカの 12 の地震データから得た式 $S = 2.05 \times 10^{-15} M_o^{2/3}$ で M_o を求め,アスペリ ティと背景領域については, $M_{oa} = \mu D_a S_a$ と $M_{ob} = M_o M_{oa}$ の式より求めている. ちなみに, Somerville et al.(1993) は,日本国内の 8 の地震データから $S = 1.09 \times 10^{-15} M_o^{2/3}$ という関係式をも導き,「日本の地殻内地震の断層面積は北西 アメリカの地震の 0.53 倍」だと指摘している. この点は注目すべきであるが,四国電力は国内データから得られた関係式 を無視し,北西アメリカのデータから得られた関係式を用いている.
- *4: Somerville et al.(1993)[52] が北西アメリカの 12 の地震データから得た式 $D = 1.55 \times 10^{-7} M_o^{1/3}$, $D_a = 3.0 \times 10^{-7} M_o^{1/3}$ を用い,背景領域は $D_b = M_{ob}/(\mu S_b)$ で求めている. 日本国内データでは, 1.55 が 2.88, 3.0 が 4.38 になる.
- *5:表 8 と同様に $\Delta \sigma = 5.0$ MPa とし、 $\Delta \sigma_a = (D_a/D)\Delta \sigma \simeq 2\Delta \sigma$ 、 $\Delta \sigma_b = (D_b/D)\Delta \sigma$ としている.
- *6: Somerville et al.(1993)[52] が北西アメリカの地震データから $S_a = 0.26S$ の関係を示していることから、四国電力はこの 式で $S_a = 215 \text{km}^2$ を求め、これを 3km 四方の格子で構成するため、9 個の格子からなる 9km 四方のアスペリティを 3 個 設定し、 $S_a = 9 \times 9 \times 3 = 243 \text{km}^2$ としている・結果として、 $S_a/S = 0.29$ になっている.
- *7: 地震調査研究推進本部が長期評価で川上断層 ~ 佐田岬北西沖の活動を「2~3m 程度の右横ずれ」と評価していることから, 四国電力は, D = 250cm と $D_a = 2D = 500$ cm をまず設定し, 地震モーメント $M_0 = \mu DS$ を求めている.
- *8:四国電力は無限長垂直横ずれ断層とみなして断層平均応力降下量を $\Delta \sigma = 2\mu D/(\pi W)$ で求めている.アスペリティの平均応力降下量は $\Delta \sigma_a = (S/S_a)\Delta \sigma$ および $S_a = 0.22S$ より求めている.断層モデルのレシピに $M_0 = 3.25 \times 10^{20}$ N·m および S = 3250km² を適用すれば、 $\Delta \sigma = (7/16)M_0(\pi/S)^{3/2} = 4.3$ MPa、 $\Delta \sigma_a = \Delta \sigma/0.22 = 19.5$ MPa と大きくなる.

	表 10: 中央構造線断層帯における「敷地前面海域の断層群 (約 42km)」の断層パラメータ						
	断層パラメータ	断層モデルで M7	7.3 とした場合	松田式で	M7.5 とした場合		
		A 法	$S_a/S = 0.22$ 法	A 法	$S_a/S = 0.22$ 法		
	走向		N57E	1			
	傾斜角 θ		90度				
	断層長さ <i>L</i>	42.0)km(松田式で	は M7.5 相	当)		
	断層幅 W		13.0 ki	n			
	断層面積 $S = LW$		546.0 ki	m^2			
	断層上・下端深さ		2 km · 15	5 km			
	破壞開始点	断層下端:	3種類(西下端	・中央下端	・東下端)		
	破壊伝播方式	同	心円状 (放射状)	と推定され	る		
	地震モーメント M ₀	1.66×10	¹⁹ N·m	3	$.13 \times 10^{19}$		
	マグニチュード	M7.3, M (四電:M7.1,	$M_{\rm w}6.7$, $M_{\rm w}6.7$)	M	7.5, M _w 6.9		
	平均すべり量 $D = M_0/(\mu S)$	76 ci	m		143		
	剛性率 $\mu = \rho \beta^2$	4.00×10^{1}	^{.0} N/m ²		同左		
	S 波速度 V _s (または β)	3.5 kr	n/s		同左		
3	平均破壊伝播速度 $V_r = 0.72 V_s$	2.5 km/s		同左			
平均	朝応力降下量 $\Delta \sigma = (7/16) M_0 (\pi/S)^{2/3}$	3.17 MPa (Ⅲ電: 2.22 MPa)		6.0			
	(四電・相口ジブッジ式) 	(四电・2.2 1 25 × 10 ¹ 9	$\frac{2}{N} m/s^2$	1	67×10^{19}		
		(四電: $1.03 \times 10^{-11} \text{ N·m/s}^2$)		1.01 / 10			
体	面積 $S_{a} = \pi r^{2}$	123.4 km ²	120.1 km ²	287.4 *2	120.1		
イ	地震モーメント $M_{0a} = \mu D_a S_a$	$7.50 imes 10^{18} \mathrm{N}{\cdot}\mathrm{m}$	7.30×10^{18}		1.38×10^{19}		
リテ	応力降下量 $\Delta \sigma_a = (S/S_a) \Delta \sigma$	14.0 MPa	14.4 MPa *1		27.1		
スペ			(四電:10.1)		[複数:33.4] * ¹		
У.	平均すべり量 <i>D</i> _a = 2D	152 cm	152 cm		286		
۲ ۲	面積 $S_{a1} = (16/22)S_a$	89.8 km ²	87.4 km^2		87.4		
, (i %	地震モーメント M _{0a1}	$6.10 \times 10^{18} \text{ N} \cdot \text{m}$	5.93×10^{18}		1.12×10^{19}		
77,	応力降下量 $\Delta \sigma_a = (S/S_a) \Delta \sigma$	14.0 MPa	14.4 MPa *1		27.1		
1	式出去 》》目 5	150	(四電:10.1)		[複数:33.4] *1		
桀	平均すべり量 $D_{a1} = M_{0a1}/(\mu S_{a1})$	170 cm	170 cm		320		
ドイ	面積 $S_{a2} = (6/22)S_a$	33.7 km ²	32.8 km ²		32.8		
ر ا م	地震モーメント M_{0a2}	$1.40 \times 10^{18} \text{ N} \cdot \text{m}$	1.36×10^{17}		2.57×10^{10}		
アス	応刀降下重 $\Delta \sigma_a = (S/S_a) \Delta \sigma$	14.0 MPa	14.4 MPa *1 (四電:10.1)		27.1 [複数:33.4] ^{*1}		
第2	平均すべり量 D _{a2} = M _{0a2} /(µS _{a2})	104 cm	104 cm		196		
	地震モーメント M _{0b} = M ₀ - M _{0a}	$9.09 \times 10^{18} \text{ N} \cdot \text{m}$	9.29×10^{18}		1.75×10^{19}		
掝	面積 $S_b = S - S_a$	422.6 km^2	425.9 km ²		425.9		
景領	平均すべり 量 $D_b = M_{0b}/(\mu S_b)$	54 cm	55 cm		103		
	実効応力 $\sigma_b = 0.2\sigma_a$	2.8 MPa	2.9 MPa *1 (四雷 · 2 0)		5.4 [複数:6 7] * ¹		
			(口屯・2.0)				

注:「A法」とは短周期レベルからアスペリティ総面積を求める方法で、「S_a/S = 0.22法」とはアスペリティ総面積を断層面 積の 22 %に固定する方法である.四国電力は「S_a/S = 0.22法」を用いているが、断層平均応力降下量の算出式として 楕円クラックモデルによる式を用いているため、レシピの円形クラック式による値より小さくなっている.気象庁マグニ チュードが小さいのは、レシピの武村 (1990)の式を丸めた武村 (1998)の式を用いているからである.

 $\xi = \frac{D_a}{D} = 2, \gamma_s = \frac{S_a}{S} = 0.22, S_{a1}: S_{a2} = 16: 6, N_a = 2, \Delta \sigma = 3.17$ MPa である. 最右列 [複数: 値] はこの場合の値である. *2:「A 法」では、アスペリティ総面積が断層面積の 1/2 以上になるとアスペリティの地震モーメントが震源断層全体の地震 モーメントを越えるという矛盾が生じ、適用できない (今の場合、 $S_a/S = 0.526, M_{0a} = 3.29 \times 10^{19}$ N·m > M_0).

表 11: 中央構造線断層帯における「敷地前面海域の断層群(約 42km: 傾斜角 30 度)」の断層パラメータ

断層パラメータ		断層モデルで M7.8 とした場合		松田式で M7.5 とした場合		
		A 法	$S_a/S = 0.22$ 法	A 法	$S_a/S = 0.22$ 法	
	走向	N57E				
	傾斜角 θ		30 度	e C		
	断層長さ <i>L</i>	42.	0 km (松田式で	ごは M7.5 相当)	
	断層幅 W		26.0 k	m		
	断層面積 $S = LW$		1092.01	km ²		
	断層上・下端深さ		2 km • 1	5 km		
	破壞開始点	断層下端	3種類(西下端	・中央下端・	東下端)	
	破壞伝播方式	同	心円状 (放射状)	と推定される		
	地震モーメント M ₀	$6.63 \times 10^{\circ}$	¹⁹ N·m	3.13	$\times 10^{19}$	
	マグニチュード	M7.8, M (四電:M7.6,	M _w 7.1 M _w 7.1)	M7.5,	, M _w 6.9	
	平均すべり量 $D = M_0/(\mu S)$	152 c	m		72	
	剛性率 $\mu = ho eta^2$	4.00×10^{1}	⁰ N/m ²	Ī	司左	
	S 波速度 V _s (または β)	3.5 km	n/s	Ī	司左	
	平均破壊伝播速度 $V_r = 0.72V_s$	2.5 km	n/s	同左		
平均応力降下量 $\Delta \sigma = (7/16) M_0 (\pi/S)^{2/3}$		4.5 MPa		2.1		
(四電:楕円クラック式)		(四電:3.3	3 MPa)	1.07	1019	
	短周期レベルA	$(四電: 2.13 \times 10^{19} \text{ N·m/s}^2)$		1.07 × 10-*		
全体	面積 $S_a = \pi r^2$	391.9 km ²	240.2 km^2	143.7	240.2	
Υ Υ	地震モーメント $M_{0a} = \mu D_a S_a$	$4.76 \times 10^{19} \text{ N} \cdot \text{m}$	2.92×10^{19}	8.23×10^{18}	1.38×10^{19}	
スペリジ	応力降下量 $\Delta \sigma_a = (S/S_a) \Delta \sigma$	12.5 MPa	20.4 MPa ^{*1} (四電:14.8)	16.0	9.6 [複数:11.8] ^{*1}	
7	平均すべり量 <i>D</i> _a = 2D	304 cm	304 cm	143	143	
7	面積 $S_{a1} = (16/22)S_a$	285.0 km^2	174.7 km^2	104.5	174.7	
÷ (i »	地震モーメント M _{0a1}	$3.87\times 10^{19}~{\rm N}{\cdot}{\rm m}$	2.37×10^{19}	6.69×10^{18}	1.12×10^{19}	
1 7 7 /	応力降下量 $\Delta \sigma_a = (S/S_a) \Delta \sigma$	12.5 MPa	20.4 MPa ^{*1} (四電:14.8)	16.0	9.6 [複数:11.8] * ¹	
笰	平均すべり量 D _{a1} = M _{0a1} /(µS _{a1})	340 cm	340 cm	160	160	
4	面積 $S_{a2} = (6/22)S_a$	106.9 km^2	65.5 km ²	39.2	65.5	
÷ (۱ ۶	地震モーメント M _{0a2}	$8.89\times 10^{18}~{\rm N}{\cdot}{\rm m}$	5.45×10^{18}	1.54×10^{18}	2.57×10^{18}	
アスハ	応力降下量 $\Delta \sigma_a = (S/S_a) \Delta \sigma$	12.5 MPa	20.4 MPa ^{*1} (四電:14.8)	16.0	9.6 [複数:11.8] * ¹	
第2	平均すべり量 $D_{a2}=M_{0a2}/(\mu S_{a2})$	208 cm	208 cm	98	98	
	地震モーメント M _{0b} = M ₀ - M _{0a}	$1.87 \times 10^{19} \text{ N} \cdot \text{m}$	3.71×10^{19}	2.30×10^{19}	1.75×10^{19}	
掝	面積 $S_b = S - S_a$	700.1 km ²	851.8 km ²	948.3	851.8	
景領	平均すべり量 $D_b = M_{0b}/(\mu S_b)$	66.9 cm	109 cm	61	51	
	実効応力 $\sigma_b = 0.2\sigma_a$	2.5 MPa	4.1 MPa *1 (四電:3.0)	3.2	1.9 [複数:2.4] * ¹	

注:「A法」とは短周期レベルからアスペリティ総面積を求める方法で,「S_a/S = 0.22法」とはアスペリティ総面積を断層面 積の 22 %に固定する方法である.四国電力は「S_a/S = 0.22法」を用いているが断層平均応力降下量の算出式として 楕円クラックモデルによる式を用いているため,レシピの円形クラック式による値より小さくなっている.気象庁マグニ チュードが小さいのは,レシピの武村 (1990)の式を丸めた武村 (1998)の式を用いているからである.

*1:複数アスペリティを考慮したレシピによれば、 $\Delta \sigma_a = \frac{\xi \Delta \sigma}{\sqrt{\gamma_s \sum_{i=1}^{N_a} (S_{ai}/S_a)}} = 25.2 \text{ MPa}, \sigma_b = 5.0 \text{MPa}$ になる.ただし、

$$\xi = \frac{D_a}{D} = 2, \gamma_s = \frac{S_a}{S} = 0.22, S_{a1} : S_{a2} = 16 : 6, N_a = 2, \Delta \sigma = 4.5 \text{ MPa}$$
である. 最右列 [複数 : 値] はこの場合の値である.

	衣 12: 中天柟垣秘附眉角	アにおける「伊丁セ	シスンド」の図	層ハファー	- ×	
	断層パラメータ	断層モデルで M7	7.1 とした場合	松田式で	M7.4 とした場合	
		A 法	$S_a/S = 0.22$ 法	A 法	$S_a/S = 0.22$ 法	
	走向		N66E	1		
	傾斜角 θ		90度			
	断層長さ <i>L</i>	33.0)km (松田式で	は M7.4 相	当)	
	断層幅 W		13.0 ki	n		
	断層面積 $S = LW$		429.0 ki	m^2		
	断層上・下端深さ		2 km · 15	5 km		
	破壞開始点	断層下端:	3種類(西下端	・中央下端	・東下端)	
	破壊伝播方式	司、	心円状 (放射状)	と推定され	る	
	地震モーメント M ₀	1.02×10	¹⁹ N·m	2	$.39 \times 10^{19}$	
	マグニチュード	M7.1, N	/I _w 6.6	M	7.4, M _w 6.9	
		(四電:M6.9	, M _w 6.6)			
	平均すべり量 $D = M_0/(\mu S)$	60 ci	m	139		
	剛性率 $\mu = \rho \beta^2$	4.00×10^{1}	10 N/m ²	同左		
_	S 波速度 V _s (または β)	3.5 kr	n/s		同左	
	平均破壊伝播速度 $V_r = 0.72V_s$	2.5 kr	n/s		同左	
平均	羽応力降下量 $\Delta \sigma = (7/16) M_0 (\pi/S)^{2/3}$	2.81 N	1Pa		6.5	
	(四電:楕円クラック式)	(四電:1.9	5 MPa)			
	短周期レベル A	$1.15 \times 10^{19} \mathrm{N \cdot m/s^2}$		1.53×10^{19}		
		(四電: 7.99×1	$10^{10} \text{ N} \cdot \text{m/s}^2$			
\sim	面積 $S_a = \pi r^2$	82.6 km^2	94.4 km ²	255.4 *1	94.4	
テ	地震モーメント $M_{0a} = \mu D_a S_a$	$3.94 \times 10^{18} \text{ N} \cdot \text{m}$	$4.50 imes 10^{18}$		$1.05 imes 10^{19}$	
Ĩ	応力降下量 $\Delta \sigma_a = (S/S_a) \Delta \sigma$	14.6 MPa	12.8 MPa		29.8	
ĸ			(四電:8.9)			
~~	平均すべり量 $D_a=2D$	119 cm	119 cm		278	
	地震モーメント $M_{0b} = M_0 - M_{0a}$	$6.30 \times 10^{18} \text{ N}{\cdot}\text{m}$	5.73×10^{18}		1.34×10^{19}	
萸	面積 $S_b = S - S_a$	346.4 km^2	334.6 km ²		334.6	
景途	平均すべり量 $\overline{D_b} = M_{0b}/(\mu S_b)$	45 cm	43 cm		100	
HT.	実効応力 $\sigma_b = 0.2\sigma_a$	2.9 MPa	2.6 MPa		6.0	
			(四電:1.8)			

表 12: 中央構造線断層帯における「伊予セグメント」の断層パラメータ

注:「A 法」とは短周期レベルからアスペリティ総面積を求める方法で,「S_a/S = 0.22 法」とはアスペリティ総面積を断層面 積の 22 %に固定する方法である.四国電力は「S_a/S = 0.22 法」を用いているが,断層平均応力降下量の算出式として 楕円クラックモデルによる式を用いているため,レシピの円形クラック式による値より小さくなっている.気象庁マグニ チュードが小さいのは,レシピの武村 (1990)の式を丸めた武村 (1998)の式を用いているからである.

マグニチュードは小数点以下第1位までが有効数字であり、小数点以下第2位を四捨五入している. たとえば、「M7.1, M_w6.6」は「M7.09, M_w6.61」を四捨五入している. 松田式 log L = 0.6M – 2.9 では断層長さ L からマグニチュード M を算出するが、このときも四捨五入している. たとえば、L = 33.0km では M7.36 を四捨五入して M7.4 としている. 右列の $M_0 = 2.39 \times 10^{19}$ N·m は M7.4 に対する地震モーメントであり、「M7.4, M_w6.9」は「M7.40, M_w6.85」を四捨五入して得た値である.

*1:「A 法」では、アスペリティ総面積が断層面積の 1/2 以上になるとアスペリティの地震モーメントが震源断層全体の地震 モーメントを越えるという矛盾が生じ、適用できない (今の場合、 $S_a/S = 0.595, M_{0a} = 2.84 \times 10^{19}$ N·m > M_0).

		断層モデルで M7.4 とした場合 松田式で M7.7 とした場合					
		A 法	$S_a/S = 0.22$ 法	A法	$S_a/S = 0.22$ 法		
	走向	N67E					
	傾斜角 θ		90度				
	断層長さ <i>L</i>	51.0 km	(松田式では	はM7.7 相当	í)		
	断層幅 W		13.0 ki	n			
	断層面積 $S = LW$		663.0 ki	m^2			
	断層上・下端深さ		2 km · 15	5 km			
	破壞開始点	断層下端:	3種類(西下端	・中央下端	・東下端)		
	破壊伝播方式	同,	心円状 (放射状)	と推定され	,3		
	地震モーメント M ₀	2.45×10	¹⁹ N·m	5	$.36 \times 10^{19}$		
	マグニチュード	M7.4, M (四電:M7.2,	M _w 6.9 M _w 6.9)	M7	7.7, M _w 7.1		
	平均すべり量 $D=M_0/(\mu S)$	92 ci	m		202		
	剛性率 $\mu = ho eta^2$	4.00×10^{1}	$^{.0}$ N/m ²		同左		
	S 波速度 V _s (または β)	3.5 kr	n/s		同左		
<u>-</u>	平均破壊伝播速度 $V_r = 0.72V_s$	2.5 kr	n/s	同左			
平均応力降下量 $\Delta \sigma = (7/16)M_0(\pi/S)^{2/3}$		3.49 N	1Pa	7.6			
(四電:楕円クラック式)		(四電:2.5	0 MPa		001019		
	短周期レベル A	1.54 × 10 ¹³ (四電:1.27 × 1	$10^{19} \text{ N} \cdot \text{m/s}^2$	2.00 × 10-3			
全体	面積 $S_a = \pi r^2$	170.6 km ²	145.9 km^2	485.5 *2	145.9		
7	地震モーメント $M_{0a} = \mu D_a S_a$	$1.26 \times 10^{19} \text{ N} \cdot \text{m}$	1.08×10^{19}		2.36×10^{19}		
	応力降下量 $\Delta \sigma_a = (S/S_a) \Delta \sigma$	13.6 MPa	15.9 MPa *1		34.8		
х,	工作すべた目の「「	104	(四電:11.4)		[複数:42.7] *1		
<u></u>	平均すべり重 <i>D_a=2D</i>	184 cm	184 cm		404		
۲. ۲	面積 $S_{a1} = (16/22)S_a$	124.1 km ²	106.1 km^2		106.1		
ر د	地震モーメント M _{0a1}	$1.02 \times 10^{19} \text{ N} \cdot \text{m}$	8.75×10^{18}		1.92×10^{19}		
ΥХ	応刀降下重 $\Delta \sigma_a = (S/S_a) \Delta \sigma$	13.6 MPa	15.9 MPa *1 (四雪 · 11 4)		34.8 [複数・42 7] * ¹		
第1	平均すべり量 D _{a1} = M _{0a1} /(µS _{a1})	206.2 cm	206 cm		452		
\mathbf{x}	面積 $S_{a2}=(6/22)S_a$	46.5 km^2	39.8 km ²		39.8		
ڊ ل ج	地震モーメント M _{0a2}	$2.35\times 10^{18}~{\rm N}{\cdot}{\rm m}$	2.01×10^{18}		4.40×10^{18}		
ĸ	応力降下量 $\Delta \sigma_a = (S/S_a) \Delta \sigma$	13.6 MPa	15.9 MPa *1		34.8		
2 F			(四電:11.4)		[複数:42.7] * ¹		
箫	平均すべり量 $D_{a2} = M_{0a2}/(\mu S_{a2})$	126 cm	126 cm		277		
	地震モーメント M _{0b} = M ₀ - M _{0a}	$1.19 \times 10^{19} \text{ N} \cdot \text{m}$	1.37×10^{19}		3.00×10^{19}		
貢域	面積 $S_b = S - S_a$	492.4 km ²	517.1 km ²		517.1		
泉	平均すべり量 $D_b = M_{0b}/(\mu S_b)$	60 cm	66 cm		145		
	実効応力 $\sigma_b = 0.2\sigma_a$	2.7 MPa	3.2 MPa *1 (四電:2.3)		7.0 [複数:8.5] ^{*1}		

表 13: 中央構造線断層帯における「川上セグメント」の断層パラメータ

注:「A法」とは短周期レベルからアスペリティ総面積を求める方法で、「S_a/S = 0.22法」とはアスペリティ総面積を断層面 積の 22 %に固定する方法である.四国電力は「S_a/S = 0.22法」を用いているが、断層平均応力降下量の算出式として 楕円クラックモデルによる式を用いているため、レシピの円形クラック式による値より小さくなっている.気象庁マグニ チュードが小さいのは、レシピの武村 (1990)の式を丸めた武村 (1998)の式を用いているからである.

*1:複数アスペリティを考慮したレシピによれば、 $\Delta \sigma_a = \frac{\xi \Delta \sigma}{\sqrt{\gamma_s \sum_{i=1}^{N_a} (S_{ai}/S_a)}} = 19.5 \text{ MPa}, \sigma_b = 3.9 \text{MPa}$ になる.ただし、

 $\xi = \frac{D_a}{D} = 2, \gamma_s = \frac{S_a}{S} = 0.22, S_{a1} : S_{a2} = 16 : 6, N_a = 2, \Delta \sigma = 3.49$ MPa である. 最右列 [複数: 値] はこの場合の値である. *2 : 「A 法」では、アスペリティ総面積が断層面積の 1/2 以上になるとアスペリティの地震モーメントが震源断層全体の地震 モーメントを越えるという矛盾が生じ、適用できない (今の場合、 $S_a/S = 0.732, M_{0a} = 7.85 \times 10^{19}$ N·m > M_0).

表 14: 中央構造線断層帯の「石鎚山脈北縁西部-伊予灘区間 (約 130km)」の断層パラメータ						
	断層パラメータ	断層モデルで M8.1 とした場合 松田式で M8.3 とした				
_		A 法	$S_a/S = 0.22 \ \texttt{\ra}$	A 法	$S_a/S = 0.22 \ \text{\AA}$	
	傾斜角 θ		90度			
	断層長さ <i>L</i>	126.0	km(松田式では	よM8.3相当)	
	断層幅 W		13.0 kr	n		
	断層面積 $S = LW$		1638.0 k	m^2		
	断層上・下端深さ		2 km · 15	km		
	破壞開始点		断層東下端	1種類		
	破壊伝播方式	同	心円状 (放射状)	と推定される	3	
	地震モーメント M ₀	1.49×10 (四電:5.13×	$\frac{^{20} \text{ N} \cdot \text{m}}{10^{19} \text{ N} \cdot \text{m}}$	2.7	70×10^{20}	
	マグニチュード	M8.1, M (四電:M7.5	M _w 7.4 , M _w 7.1)	M8.	3, M _w 7.6	
平均すべり 量 $D = M_0/(\mu S)$		228 c (四電:7	cm 8 cm)	412		
	剛性率 $\mu = ho eta^2$	4.00×10^{-10}	¹⁰ N/m ²	同左		
	S 波速度 V _s (または β)	3.5 ki	n/s	同左		
	平均破壊伝播速度 $V_r = 0.72 V_s$	2.5 kr	n/s		同左	
平均	周応力降下量 $\Delta \sigma = (7/16) M_0 (\pi/S)^{2/3}$ (四電:楕円クラック式)	5.5 M (四電:1.95~2	IPa 2.50MPa) * ³		9.9	
	短周期レベル A	2.81×10 ¹⁹ (四電:1.97×10	${}^{9} { m N}{\cdot}{ m m/s}^{2}$ ${}^{19} { m N}{\cdot}{ m m/s}^{2}$) *3	3.42×10^{19}		
*	面積 $S_a = \pi r^2$	770.2 km^2	360.4 km ²	1696.0 *2	360.4	
・イ全体	地震モーメント $M_{0a} = \mu D_a S_a$:下段()内は四国電力	$1.40 \times 10^{20} \text{ N} \cdot \text{m}$	$\begin{array}{c} 6.57 \times 10^{19} \\ (2.26 \times 10^{19}) \end{array}$		1.19×10^{20}	
ペリテ	応力降下量 $\Delta \sigma_a = (S/S_a) \Delta \sigma$:下段()内は四国電力	11.7 MPa	24.9 MPa ^{*1} (8.9~11.4) ^{*3}		45.1 [複数:88.6] * ¹	
アス	平均すべり量 <i>D</i> _a = 2 <i>D</i>	456 cm	456 cm (四電:157)		823	
	地震モーメント $M_{0b} = M_0 - M_{0a}$:下段()内は四国電力	$8.89 \times 10^{18} \text{ N} \cdot \text{m}$	$\begin{array}{c} 8.36 \times 10^{19} \\ (2.87 \times 10^{19}) \end{array}$		1.51×10^{20}	
域	面積 $S_b = S - S_a$	867.8 km ²	1277.6 km^2		1277.6	
背景領	平均すべり量 $D_{b}=M_{0b}/(\mu S_{b})$	26 cm	164 cm (四電:56)		296	
<u>~</u>	実効応力 $\sigma_b = 0.2\sigma_a$	2.3 MPa	5.0 MPa *1 (四電:2.3)		9.0 [複数:17.7] ^{*1}	

注:四国電力は、中央構造線断層帯の「石鎚山脈北縁西部-伊予灘区間 (約 130km)」の地震モーメントを求める際、断層帯を 構成する「敷地前面海域の断層群」、「伊予セグメント」、「川上セグメント」の3 断層の地震モーメントを単純加算してい る.これは断層モデルのスケーリング則 (7.5×10¹⁸N·m $\leq M_0 \leq 7.5 \times 10^{20}$ N·m では M_0 は S の 2 乗に比例して増大す る)を無視しており、地震規模を過小評価している。その結果、3 断層を個別に評価した断層モデルからの地震波を単純 に足し合わせるだけの評価になっており、3 断層が一体になってより大きな地震として動く場合の地震動を過小評価する ことになる。地震モーメントが 7.5×10²⁰N·m を超える「金剛山地東縁-伊予灘区間 (約 360km)」のより長大な中央構造 線断層帯を考える場合には妥当だが、「石鎚山脈北縁西部-伊予灘区間 (約 130km)」を扱う場合には不適切である。ちなみ に、Scholtz(2002) によれば、 $M_0 > 7.5 \times 10^{20}$ N·m では、 $S[km^2] = 5.30 \times 10^{-25} M_0[dyn·cm]$ が成り立ち、 M_0 は S に比例 するとされているが、レシビでは「長大な断層についてはまだ研究段階である」として採用されていない。

*1:中央構造線断層帯には3断層で計5個のアスペリティがあり、複数アスペリティを考慮したレシピによれば、

 $\Delta \sigma_a = \frac{\xi \Delta \sigma}{\sqrt{\gamma_s} \sum_{i=1}^{N_a} (S_{ai}/S_a)} = 49.0 \text{ MPa}, \sigma_b = 9.8 \text{MPa} になる. この方法ではアスペリティの個数が増えるほど応力降下$ 量が大きくなるため、このような長大な断層帯にそのまま適用するのは適切ではない. 最右列 [複数: 値] はこの場合の値

重が入さくなるため、このような長人な附層帝にてのまま適用するのは適切ではない。 取石列 [複数:他] はこの場合の他 だが、過大になっており、あくまで参考値である.

- *2: 「A 法」では、アスペリティ総面積が断層面積の 1/2 以上になるとアスペリティの地震モーメントが震源断層全体の地震 モーメントを越えるという矛盾が生じ、適用できない (今の場合、 $S_a/S = 1.035, M_{0a} = 5.59 \times 10^{20}$ N·m > M_0).
- *3:四国電力はカスケードモデルを使っており、これらの値を表示していないが、四国電力による各断層の値の範囲を示した. 四国電力が各断層に用いた楕円クラック式を全体の断層帯に適用すると、 $M_0 = 5.13 \times 10^{19}$ N·m に対し $\Delta \sigma =$ 約 3.0MPa, $\Delta \sigma_a = \Delta \sigma / 0.22 = 13.6$ MPa になり、いずれも各断層の値を超えてしまう.

表 15: 中央構造線断層帯の「石鎚山脈北縁西部-伊予灘区間 (約 130km)」のアスペリティ評価							
	断層パラメータ	石鎚山脈北縁西部-伊予灘区間(約130km)					
		敷地前面海域の断層群	伊予セグメント	川上セグメント			
	傾斜角 θ		90度				
	断層長さ <i>L</i>	126.0 km	(松田式では M8	3.3 相当)			
	断層幅 W		13.0 km				
	断層面積 $S = LW$		$1638.0 \mathrm{km^2}$				
	断層上・下端深さ		2 km • 15 km				
	破壞開始点	断	行層東下端1種類				
	破壊伝播方式	同心円状	(放射状)と推定	ミされる			
	地震モーメント M ₀	$1.49 \times 10^{20} \text{ N} \cdot$	m (四電:5.13	$3 \times 10^{19} \text{ N} \cdot \text{m}$			
	マグニチュード	M8.1, M_w7	.4 (四電:M7.	5, M _w 7.1)			
-	平均すべり量 $D=M_0/(\mu S)$	228 0	cm (四電:78	cm)			
	剛性率 $\mu = ho eta^2$	4	$.00 \times 10^{10} \text{ N/m}^2$				
	S 波速度 V _s (または β)		3.5 km/s				
<u></u> 平	^五 均破壊伝播速度 $V_r = 0.72V_s$		2.5 km/s				
平均	応力降下量 $\Delta \sigma = (7/16) M_0 (\pi/S)^{2/3}$	5.5 MPa	(四電:1.95~2.	.50 MPa) *2			
	短周期レベル A	2.81×10^{19} N⋅m/s ² (四電: 1.97×10^{19} N⋅m/s ²) * ³					
スペリティ 全体	面積 $S_a = \pi r^2$	360.4 km ²					
	地震モーメント $M_{0a} = \mu D_a S_a$	6.57×10^{19} N·m (四電: 2.26×10^{19})					
	応力降下量 $\Delta \sigma_a = (S/S_a)\Delta \sigma$	24.9 MPa *1 (四電: 8.9~11.4) *2					
2	平均すべり量 <i>D</i> _a = 2D	456 c	456 cm (四電:157)				
\sim	面積 $S_{a1} = (16/22)S_a$	87.4 km^2	94.4	106.1			
ιL	地震モーメント M _{0a1}	$1.64 \times 10^{19} \mathrm{N \cdot m}$	1.84×10^{19}	2.20×10^{19}			
2	: 下段())内は四国電力	(5.93×10^{10})	(4.50×10^{10})	(8.75×10^{10})			
ζХ	心刀阵下里 $\Delta \sigma_a = (S/S_a) \Delta \sigma$	24.9 MPa ⁺¹ (四電:10.1)		24.9 ⁴¹ (四電:11.4)			
	平均すべり量 $D_{a1} = M_{0a1}/(\mu S_{a1})$	470 cm	489	518			
(1) (1) (1) (1) (1) (1) (1) ((四電:170)	(四電:119)	(四電:206)			
\sim	面積 $S_{a2} = (6/22)S_a$	32.8 km^2		39.8			
1F	地震モーメント M _{0a2}	$3.80 \times 10^{18} \text{N} \cdot \text{m}$		5.05×10^{18}			
Ĩ	:下段()内は四国電力	(1.36×10^{17})	_	(2.01×10^{18})			
Ķ	応刀降下量 $\Delta \sigma_a = (S/S_a) \Delta \sigma$	24.9 MPa *1 (四雪 · 10 1)		24.9 ^{*1} (四雪:11 4)			
2	平均すべり量 $D_{22} = M_{0-2}/(\mu S_{20})$	289 cm		317			
策	$\mu_{0a2} = \mu_{0a2} - \mu_{0a2} - (\mu_{0a2})$	(四電:104)		(四電:126)			
	地震モーメント M _{0b} = M ₀ - M _{0a}	$8.36 imes 10^{19} \text{ N} \cdot$	m (四電:2.87	$7 \times 10^{19} \text{ N} \cdot \text{m}$			
領域	面積 $S_b = S - S_a$		1277.6 km^2				
東	平均すべり量 $D_b = M_{0b}/(\mu S_b)$	164 cm	n (四電:56 ci	m)			
μШ	実効応力 $\sigma_b = 0.2\sigma_a$	5.0 M	Pa *1 (四電:2.3]	MPa)			

注:四国電力は、中央構造線断層帯の「石鎚山脈北縁西部-伊予灘区間 (約 130km)」の地震モーメントを求める際、断層帯を 構成する「敷地前面海域の断層群」、「伊予セグメント」、「川上セグメント」の3 断層の地震モーメントを単純加算してい る. これは断層モデルのスケーリング則 (7.5 × 10¹⁸N·m $\leq M_0 \leq$ 7.5 × 10²⁰N·m では M_0 は S の 2 乗に比例して増大す る)を無視しており、地震規模を過小評価している. その結果、3 断層を個別に評価した断層モデルからの地震波を単純 に足し合わせるだけの評価になっており、3 断層が一体になってより大きな地震として動く場合の地震動を過小評価する ことになる. 地震モーメントが 7.5 × 10²⁰N·m を超える「金剛山地東縁-伊予灘区間 (約 360km)」のより長大な中央構造 線断層帯を考える場合には妥当だが、「石鎚山脈北縁西部-伊予灘区間 (約 130km)」を扱う場合には不適切である. ちなみ に、Scholtz(2002) によれば、 $M_0 > 7.5 \times 10^{20}$ N·m では、 $S[km^2] = 5.30 \times 10^{-25} M_0$ [dyn·cm] が成り立ち、 M_0 は S に比例 するとされているが、レシピでは「長大な断層についてはまだ研究段階である」として採用されていない.

- *1:複数アスペリティを考慮したレシピによれば、 $\Delta \sigma_a = 49.0$ MPa, $\sigma_b = 9.8$ MPa になる. この方法ではアスペリティの個数 が増えるほど応力降下量が大きくなるため、長大な断層帯にそのまま適用するのは適切ではなく、参考値である.
- *2:四国電力はこれらの値を表示していないため、四国電力による各断層の値の範囲を示した.楕円クラック式によれば、 $M_0 = 5.13 \times 10^{19}$ N·m に対し $\Delta \sigma = 約 3.0$ MPa, $\Delta \sigma_a = \Delta \sigma / 0.22 = 13.6$ MPa になり、これらの値を超えてしまう.

		敷地前面海域の断層群		伊予セグメント	
			$S_a/S = 0.22$ 法	A法 $S_a/S = 0.22$	
	fi fi fi fi fi fi fi fi fi fi fi fi fi f	901		9(<u></u>)度
	断層長さ L _{model}	$42.0 \text{ km} \rightarrow$	47.0 km	33.0 km-	\rightarrow 38.0 km
	断層幅 W _{model}	$13.0 \text{ km} \rightarrow$	15.0 km	13.0 km-	\rightarrow 15.0 km
	断層面積 $S = L_{\text{model}} W_{\text{model}}$	705.0	km ²	570.	0 km^2
	地震モーメント M ₀	3.13×10^{-3}	0^{19} N·m	2.39	$\times 10^{19}$
	マグニチュード	M7.5, 1	M _w 6.9	M7.4,	M _w 6.9
	平均すべり量 $D = M_0/(\mu S)$	111 0	cm	2	202
	剛性率 $\mu = \rho \beta^2$	4.00×10	10 N/m^2	티	同左
	S 波速度 V _s (または β)	3.5 k	m/s	ㅋ	同左
	平均破壊伝播速度 $V_r = 0.72V_s$	2.5 k	m/s	ㅋ	同左
平均	同応力降下量 $\Delta \sigma = (7/16) M_0 (\pi/S)^{2/3}$	4.1 N	IPa	4	4.3
	短周期レベル A	$1.67 \times 10^{19} \text{ N} \cdot \text{m/s}^2$		1.53×10^{19}	
e体	面積 $S_a = \pi r^2$	222.6 km^2	155.1 km ²	192.3	125.4
∠⊥	地震モーメント $M_{0a} = \mu D_a S_a$	$1.97\times 10^{19}~{\rm N}{\cdot}{\rm m}$	1.38×10^{19}	1.61×10^{19}	1.05×10^{19}
スペリテ	応力降下量 $\Delta \sigma_a = (S/S_a) \Delta \sigma$	12.9 MPa	18.5 MPa [複数:22.7] * ¹	12.7	19.4
7	平均すべり量 <i>D</i> _a = 2D	222 cm	222 cm	210	210
۲ ۲	面積 $S_{a1} = (16/22)S_a$	161.9 km ²	112.8 km ²		
ڊ را ج	地震モーメント M _{0a1} * ²	$1.61 \times 10^{19} \text{ N} \cdot \text{m}$	1.12×10^{19}		
1 アスイ	応力降下量 $\Delta \sigma_a = (S/S_a) \Delta \sigma$	12.9 MPa	18.5 MPa [複数:22.7] * ¹	単一アスペリティ	
搿	平均すべり量 $D_{a1}=M_{0a1}/(\mu S_{a1})$	248 cm	248 cm		
7-7	面積 $S_{a2} = (6/22)S_a$	60.7 km^2	42.3 km^2		
ڊ را ۽	地震モーメント M _{0a2} * ²	$3.69\times 10^{18}~{\rm N}{\cdot}{\rm m}$	2.57×10^{18}	1	
2 アスィ	応力降下量 $\Delta \sigma_a = (S/S_a) \Delta \sigma$	12.9 MPa	18.5 MPa [複数:22.7] * ¹	単一アン	スペリティ
搿	平均すべり量 $D_{a2}=M_{0a2}/(\mu S_{a2})$	152 cm	152 cm		
	地震モーメント $M_{0b} = M_0 - M_{0a}$	$1.15\times 10^{19}~{\rm N}{\cdot}{\rm m}$	1.75×10^{19}	7.77×10^{18}	1.34×10^{19}
镇城	面積 $S_b = S - S_a$	482.4 km^2	549.9 km ²	377.7	444.6
景럓	平均すべり量 $D_{b}=M_{0b}/(\mu S_{b})$	60 cm	80 cm	51	75
뷥	実効応力 $\sigma_b = 0.2\sigma_a$	2.6 MPa	3.7 MPa [複数:4.5] ^{*1}	2.5	3.9

表 16: レシピ修正モデルによる「敷地前面海域の断層群」と「伊予セグメント」の断層パラメータ

注:レシピ修正モデルとは,地震調査研究推進本部(推本)が2008年4月11日に改訂したレシピに記載されている手法である. 従来は断層面積から地震規模を算出していたが,推本が活断層の長期評価で用いている「震源断層の長さから松田式で算 出された地震規模」と比べて半分以下になるという問題点が残されていた.推本はこれを解決するため,従来からの方法 は「過去の地震記録などに基づき震源断層を推定する場合や詳細な調査結果に基づき震源断層を推定する場合」とし、こ れとは別に「地表の活断層の情報をもとに簡便化した方法で震源断層を推定する場合」をレシピに追加した.これがレシ ピ修正モデルである.

レシピ修正モデルでは、松田の式から求めた地震規模に断層面積をできるだけ合わせるが、断層幅 W_{model} を W + 2km まで、断層長さ L_{model} を L + 5km までしか大きくできない. 上表の場合、地震モーメントに対応する断層面積はそれぞれ 749.7km², 655.2km² である.

「A法」とは短周期レベルからアスペリティ総面積を求める方法で、「 $S_a/S = 0.22$ 法」とはアスペリティ総面積を断層面積の 22 %に固定する方法である.

*1:複数アスペリティを考慮したレシピによれば、
$$\Delta \sigma_a = \frac{\xi \Delta \sigma}{\sqrt{\gamma_s \sum_{i=1}^{N_a} (S_{ai}/S_a)}}$$
であり、[複数:値]に記載された値になる.

ただし,
$$\xi = \frac{D_a}{D} = 2, \gamma_s = \frac{S_a}{S} = 0.22, \frac{S_{a1}}{S_a} = \frac{10}{22}, \frac{S_{a2}}{S_a} = \frac{0}{22}, N_a = 2$$
である.

_ 表 17: レシピ修正モデルによる「川」		ニセグメント」と「断層帯全長 (約1		30km)」の断層パラメータ		
	断層パラメータ	川上セグ	メント	断層帯全	:長(約130km)	
		A 法	$S_a/S = 0.22$ 法	A 法	$S_a/S = 0.22$ 法	
	傾斜角 θ	90 /	吏		90 度	
	断層長さ $L_{ m model}$	$51.0 \text{ km} \rightarrow$	56.0 km	126.0 kr	$m \rightarrow 141.0 \text{ km}$	
	断層幅 $W_{ m model}$	$13.0 \text{ km} \rightarrow$	15.0 km	13.0 kr	$m \rightarrow 15.0 \text{ km}$	
	断層面積 $S = L_{\text{model}} W_{\text{model}}$	840.0	km ²	21	15.0 km ²	
	地震モーメント M ₀	5.36×10^{-10}	19 N·m	2.7	0×10^{20}	
	マグニチュード	M7.7, 1	M _w 7.1	M8.	3, M _w 7.6	
	平均すべり 量 $D=M_0/(\mu S)$	159	cm		319	
	剛性率 $\mu = ho eta^2$	4.00×10	10 N/m ²		同左	
	S 波速度 V _s (または β)	3.5 k	m/s		同左	
	平均破壊伝播速度 $V_r = 0.72V_s$	2.5 k	m/s		同左	
平均	$h応力降下量 \Delta \sigma = (7/16)M_0(\pi/S)^{2/3}$	5.4 N	IPa	6.8		
	短周期レベル A	$2.00\times10^{19}~\mathrm{N\cdot m/s^2}$		3.42×10^{19}		
全体	面積 $S_a = \pi r^2$	383.2 km^2	184.8 km^2	1313.5 *2	465.3	
1	地震モーメント $M_{0a} = \mu D_a S_a$	$4.89 \times 10^{19} \text{ N} \cdot \text{m}$	2.36×10^{19}		1.19×10^{20}	
スペリテ	応力降下量 $\Delta \sigma_a = (S/S_a) \Delta \sigma$	11.8 MPa	24.4 MPa [複数:30.0] ^{*1}		30.7 [複数:60.7] ^{*1}	
Z	平均すべり量 <i>D</i> _a = 2D	319 cm	319 cm		638	
7	面積 $S_{a1} = (16/22)S_a$	278.7 km^2	134.4 km^2			
÷ (`	地震モーメント M _{0a1} * ²	$3.98 \times 10^{19} \text{ N} \cdot \text{m}$	1.92×10^{19}			
1771	応力降下量 $\Delta \sigma_a = (S/S_a) \Delta \sigma$	11.8 MPa	24.4 MPa [複数:30.0] *1	5個のアスペリティ		
搿	平均すべり量 $D_{a1}=M_{0a1}/(\mu S_{a1})$	357 cm	357 cm			
7	面積 $S_{a2} = (6/22)S_a$	104.5 km^2	50.4 km^2			
÷ (`	地震モーメント M _{0a2} * ²	$9.13\times10^{18}~{\rm N}{\cdot}{\rm m}$	4.40×10^{18}			
2771	応力降下量 $\Delta \sigma_a = (S/S_a) \Delta \sigma$	11.8 MPa	24.4 MPa [複数:30.0] *1	5個のアスペリティ		
箫	平均すべり量 $D_{a2}=M_{0a2}/(\mu S_{a2})$	218 cm	218 cm			
	地震モーメント M _{0b} = M ₀ - M _{0a}	$4.69 \times 10^{18} \text{ N} \cdot \text{m}$	3.00×10^{19}		1.51×10^{20}	
镇城	面積 $S_b = S - S_a$	456.8 km ²	655.2 km ²		1649.7	
景命	平均すべり量 $D_{b}=M_{0b}/(\mu S_{b})$	26 cm	114 cm		229	
뷥	実効応力 $\sigma_b = 0.2\sigma_a$	2.4 MPa	4.9 MPa [複数:6.0] * ¹		6.1 [複数:12.1] * ¹	

注:レシピ修正モデルとは、地震調査研究推進本部(推本)が2008年4月11日に改訂したレシピに記載されている手法である. 従来は断層面積から地震規模を算出していたが、推本が活断層の長期評価で用いている「震源断層の長さから松田式で算 出された地震規模」と比べて半分以下になるという問題点が残されていた。推本はこれを解決するため、従来からの方法 は「過去の地震記録などに基づき震源断層を推定する場合や詳細な調査結果に基づき震源断層を推定する場合」とし、こ れとは別に「地表の活断層の情報をもとに簡便化した方法で震源断層を推定する場合」をレシピに追加した.これがレシ ピ修正モデルである.

レシピ修正モデルでは、松田の式から求めた地震規模に断層面積をできるだけ合わせるが、断層幅 W_{model} を W + 2km まで、断層長さ L_{model} を L + 5km までしか大きくできない、川上セグメントの場合、地震モーメントに対応する断層面 積は 981.4km² である.

「A法」とは短周期レベルからアスペリティ総面積を求める方法で、「 $S_a/S = 0.22$ 法」とはアスペリティ総面積を断 層面積の22%に固定する方法である.

*1:複数アスペリティを考慮したレシピによれば、 $\Delta \sigma_a = \frac{\xi \Delta \sigma}{\sqrt{\gamma_s \sum_{i=1}^{N_a} (S_{ai}/S_a)}}$ であり、[複数:値]に記載された値になる. ただし、 $\xi = \frac{D_a}{D} = 2, \gamma_s = \frac{S_a}{S} = 0.22, \frac{S_{a1}}{S_a} = \frac{16}{22}, \frac{S_{a2}}{S_a} = \frac{6}{22}, N_a = 2$ である。断層帯全長の場合にはアスペリティ数が多いため平均応力降下量が過大になり、参考値に留まる.

*2:「A 法」では,アスペリティ総面積が断層面積の 1/2 以上になるとアスペリティの地震モーメントが震源断層全体の地震 モーメントを越えるという矛盾が生じ、適用できない (今の場合、 $S_a/S = 0.621, M_{0a} = 3.35 \times 10^{20}$ N·m > M_0).

	断層パラメータ	石鎚山脈北縁	西部-伊予灘区	間 (約 130km)		
		敷地前面海域の断層群	伊予セグメント	川上セグメント		
			90度			
	断層長さ L _{model}	126	5.0 km ightarrow 141.0 km	ĸm		
	断層幅 $W_{ m model}$	13	$3.0 \text{ km} \rightarrow 15.0 \text{ km}$	n		
	断層面積 $S = L_{\text{model}} W_{\text{model}}$		2115.0 km^2			
	断層上・下端深さ		$2 \text{ km} \cdot 15 \text{ km}$			
	破壞開始点	断	行層東下端1種類			
	破壊伝播方式	同心円状	(放射状)と推定	ミされる		
	地震モーメント M ₀	$2.70 imes 10^{20} \text{ N} \cdot$	m (四電:5.13	$3 \times 10^{19} \text{ N} \cdot \text{m}$)		
	マグニチュード	M8.3, M _w 7	7.6 (四電:M7.	.5, M _w 7.1)		
-	平均すべり量 $D=M_0/(\mu S)$	319 0	cm (四電:78	cm)		
	剛性率 $\mu = ho eta^2$	4	$.00 \times 10^{10} \text{ N/m}^2$			
	S 波速度 V _s (または β)		3.5 km/s			
<u> </u>	艺均破壊伝播速度 $V_r = 0.72 V_s$		2.5 km/s			
平均,	応力降下量 $\Delta \sigma = (7/16) M_0 (\pi/S)^{2/3}$	6.8 MF	Pa (四電:1.9 1	MPa) *2		
	短周期レベル A	$3.42 \times 10^{19} \text{ N·m/s}^2$ (四電: $1.97 \times 10^{19} \text{ N·m/s}^2$)*3				
۲.	面積 $S_a = \pi r^2$	465.3 km^2				
スペリナ 一 一 一	地震モーメント $M_{0a} = \mu D_a S_a$	1.19×10^{20} N·m (四電: 2.26×10^{19})				
	応力降下量 $\Delta \sigma_a = (S/S_a) \Delta \sigma$	30.7 MPa *1 (四電: 8.6) *2				
2	平均すべり量 <i>D</i> _a = 2D	638 c	em (四電:157)		
\sim	面積 $S_{a1} = (16/22)S_a$	112.8 km^2	121.9	137.0		
Ĩ	地震モーメント M _{0a1}	$2.97 \times 10^{19} \mathrm{N \cdot m}$	3.35×10^{19}	3.99×10^{19}		
ج	:下段()内は四国電力	(5.93×10^{18})	(4.50×10^{18})	(8.75×10^{18})		
Υ, Х,	応力降下量 $\Delta \sigma_a = (S/S_a) \Delta \sigma$	30.7 MPa *1 (四電:10.1)	30.7 ^{*1} (四電:8.9)	30.7 ^{*1} (四電:11.4)		
	平均すべり量 $D_{a1}=M_{0a1}/(\mu S_{a1})$	658 cm	687	729		
र्थमत्		(四電:170)	(四電:119)	(四電:206)		
\mathbf{r}	面積 $S_{a2} = (6/22)S_a$	42.3 km^2		51.4		
ir	地震モーメント M _{0a2}	$6.85 \times 10^{18} \mathrm{N \cdot m}$		9.17×10^{18}		
Ĩ~	:下段()内は四国電力	(1.36×10^{17})	1	(2.01×10^{10})		
7 X.	応力降下量 $\Delta \sigma_a = (S/S_a) \Delta \sigma$	30.7 MPa *1 (四電:10.1)		30.7 ^{*1} (四電:11.4)		
5	平均すべり量 $D_{a2} = M_{0a2}/(\mu S_{a2})$	405 cm	-	446		
榮禾		(四電:104)		(四電:126)		
457	地震モーメント M _{0b} = M ₀ - M _{0a}	$1.51 \times 10^{20} \text{ N} \cdot$	m (四電:2.87	$7 \times 10^{19} \text{ N} \cdot \text{m}$		
通域	面積 $S_b = S - S_a$		1649.7 km^2			
影	平均すべり量 $D_b = M_{0b}/(\mu S_b)$	229 cm	n (四電:56 ci	m)		
光目	実効応力 $\sigma_b = 0.2\sigma_a$	6.1 M	Pa ^{*1} (四電:2.3]	MPa)		

注:四国電力は、中央構造線断層帯の「石鎚山脈北縁西部-伊予灘区間 (約 130km)」の地震モーメントを求める際、断層帯を 構成する「敷地前面海域の断層群」、「伊予セグメント」、「川上セグメント」の3 断層の地震モーメントを単純加算してい る. これは断層モデルのスケーリング則 (7.5 × 10¹⁸N·m $\leq M_0 \leq 7.5 \times 10^{20}$ N·m では M_0 は S の 2 乗に比例して増大す る)を無視しており、地震規模を過小評価している. その結果、3 断層を個別に評価した断層モデルからの地震波を単純 に足し合わせるだけの評価になっており、3 断層が一体になってより大きな地震として動く場合の地震動を過小評価する ことになる. 地震モーメントが 7.5 × 10²⁰N·m を超える「金剛山地東縁-伊予灘区間 (約 360km)」のより長大な中央構造 線断層帯を考える場合には妥当だが、「石鎚山脈北縁西部-伊予灘区間 (約 130km)」を扱う場合には不適切である. ちなみ に、Scholtz(2002) によれば、 $M_0 > 7.5 \times 10^{20}$ N·m では、 $S[km^2] = 5.30 \times 10^{-25} M_0$ [dyn·cm] が成り立ち、 M_0 は S に比例 するとされているが、レシピでは「長大な断層についてはまだ研究段階である」として採用されていない.

*1:複数アスペリティを考慮したレシピによれば、 $\Delta \sigma_a = 60.7$ MPa, $\sigma_b = 12.1$ MPa になる. この方法ではアスペリティの個数 が増えるほど応力降下量が大きくなるため、長大な断層帯にそのまま適用するのは適切ではなく、参考値である.

*2:四国電力はこれらの値を求めていないが,3断層の計5個のアスペリティを一つのアスペリティと見なし,地震モーメント M₀,総断面積 S,アスペリティ総断面積 S_aの値からレシピに従って計算した.

表 19: 中央構造線断層帯の「石鎚山脈北縁西部-伊予灘区間(約130km)」の断層パラメータ

断層パラメータ		レシピによるス	、ケーリング則	四国電力のスケーリング則	
		A 法	$S_a/S = 0.22$ 法	無限長地表垂直横ずれ断層モデル	
	傾斜角 θ		90度		
	断層長さ <i>L</i>	120	5.0 km (松田式で	は M8.3 相当)	
	断層幅 W		13.0 kn	n	
	断層面積 $S = LW$		1638.0 ki	m^2	
	断層上・下端深さ		2 km · 15	km	
	破壞開始点		断層東下端	1種類	
	破壊伝播方式	Ĩ	司心円状 (放射状)。	と推定される	
	地震モーメント M ₀	1.49×1 (四雷:5.13)	$0^{20} \text{ N} \cdot \text{m}$ × $10^{19} \text{ N} \cdot \text{m}$)	$1.49 \times 10^{20} \text{ N} \cdot \text{m}$	
	マグニチュード	M8.1,	M _w 7.4	M7.9, M _w 7.4	
		(四電:M7.:	5, $M_w 7.1$)	武村 (1998) の丸めた式	
	平均すべり量 $D = M_0/(\mu S)$	228	cm	228cm	
		(四電:)	78 cm)		
	剛性率 $\mu = \rho \beta^2$	$4.00 \times 10^{10} \text{ N/m}^2$		同左	
	S波速度 V_s (または β)	3.5 k	tm/s	同左	
	平均破壞伝播速度 $V_r = 0.72V_s$	2.5 km/s		同左	
平均	周応力降下量 $\Delta \sigma = (7/16) M_0 (\pi/S)^{2/3}$	5.5 MPa (四雲:1 95~2 50MPa)		4.46 MPa 毎四 単地 志 五 搏 デ わ 断 屋	
	(四電:楕円クラック式)	$2.81 \times 10^{19} \text{ N m/s}^2$		一	
	に一次 ()内は四国電力	$(0.799 \sim 1.27 \times 10^{19} \text{ N} \cdot \text{m/s}^2)$		2.01 × 10 IN·III/8	
	面積 $S_{a} = \pi r^2$	770.2 km^2	360.4 km^2	550.4 km^2	
14		$[S_a/S = 0.47]$	$[S_a/S = 0.22]$	$[S_a/S = 0.34]$	
ィ全体	地震モーメント $M_{0a} = \mu D_a S_a$	$1.40 \times 10^{20} \text{ N} \cdot \text{m}$	6.57×10^{19} (2.26 × 10 ¹⁹)	$1.00 \times 10^{20} \text{ N} \cdot \text{m}$	
ミリテ	応力降下量 $\Delta \sigma_a = (S/S_a) \Delta \sigma$ · 下段() 内は四国電力	11.7 MPa	(2.20×10^{-9}) 24.9 MPa $(8.9 \sim 11.4)$	13.3 MPa	
アスハ	平均すべり量 D _a = 2D	456 cm	(0.5 11.1) 456 cm (四電:157)	456 cm	
	地震モーメント $M_{0b} = M_0 - M_{0a}$:下段()内は四国電力	$8.89 \times 10^{18} \text{ N} \cdot \text{m}$	$8.36 \times 10^{19} \\ (2.87 \times 10^{19})$	$4.90 \times 10^{19} \text{ N} \cdot \text{m}$	
掝	面積 $S_b = S - S_a$	867.8 km^2	1277.6 km^2	1087.6 km^2	
皆景領	平均すべり 量 $D_b = M_{0b}/(\mu S_b)$	26 cm	164 cm (四電:56)	113 cm	
πΨ	実効応力 $\sigma_b = 0.2\sigma_a$	2.3 MPa	5.0 MPa (四電:1.8~2.3)	2.7 MPa	

注:四国電力は当初,カスケードモデルを採用し,「レシピによるスケーリング則」の下段に記載の括弧内の値を採用していた. 平均応力降下量の計算もレシピによらず,楕円クラックモデルを用いていた.ところが,バックチェック報告の審議会でス ケーリング則による評価を求められると,地震モーメントなど巨視的パラメータについてはスケーリング則に従いながら, 断層平均応力降下量を無限長地表垂直横ずれ断層モデルによる計算式 $\Delta \sigma = 2\mu D/(\pi W)$ を用い,アスペリティ面積につ いても,「短周期レベルが壇ら (2001) に等しくなるように」と称して $S_a/S = 0.336$ (四国電力は有効数字から 0.34 と記載) とし, 微視的パラメータを設定している.しかし,円形クラックに基づく式 $M_0 = 16\Delta\sigma S^{3/2}/(7\pi^{3/2})$,壇ら (2001)の式 $A = 4\pi r \Delta \sigma_a \beta^2$ および Broatwright(1988)の式 $M_0 = 16r^2 R \Delta \sigma_a / 7$ から得られる式 $r = 4\pi \Delta \sigma \beta^2 S / A$ を用いても, $S_a/S = \pi r^2/S = 16\pi S \Delta \sigma^2 \beta^4 / A^2 = 0.311$ ($S_a = 510$ km², $\Delta \sigma_a = \Delta \sigma / 0.311 = 14.3$ MPa) になり,四国電力のいう 0.34 にはな らない、数%の差とはいえ,計算過程が不透明である.

括弧による記載がない欄では、四国電力のカスケードモデルによる値が「レシピによるスケーリング則」による値と同 じであることを示す.

表	長20: 中央構造線断層帯の「石鎚山	脈北縁西部-伊予灘区間(約130km)」のアスペリティ評価					
	断層パラメータ	石鎚山脈北縁西部-伊予灘区間(約130km)					
		敷地前面海域の断層群	伊予セグメント	川上セグメント			
	傾斜角 θ		90度				
	断層面積 $S = LW$	1638.0 km ² (断層長さ	L = 126.0 km, 断	罾幅 W = 13.0 km)			
	断層上・下端深さ		2 km · 15 km				
	地震モーメント M ₀	$1.49 imes 10^{20} \ \mathrm{N}$	·m (四電:5.13×	$(10^{19} \text{ N} \cdot \text{m})$			
	マグニチュード		M8.1, M _w 7.4				
	亚均才べり号 D _ M /(…S)	< 四電:M7.9,	M _w /.4>(四電:M	$(.5, M_{\rm w}/.1)$			
	中均9、9重 $D = M_0/(\mu S)$ 1広力降下景 $\Lambda_{z=}(7/16)M(z/S)^{2/3}$	220	CIII (四电 · / 8 CII 5 5 MDa	1)			
74	$M \Delta J = (1/10) M_0(\pi/3)$	<四電:4.46	MPa > (四電:1.9~	-2.5 MPa)			
	短周期レベル A	$2.81 \times 10^{19} \text{ N} \cdot \text{m/s}^2$	(四電:0.799~1	$1.27 \times 10^{19} \text{ N} \cdot \text{m/s}^2$)			
茶	面積 $S_a = \pi r^2$	_	360.4 km^2				
全	₩電エーメント Μ □ □ α		$\underline{\text{M}}$ = 550.4 km $>$				
ïЬ	地展モーメント $M_{0a} = \mu D_a S_a$	<四電: 1.00×10	0.57×10^{-10} N·m> (四電:2.5	$26 \times 10^{19} \text{ N} \cdot \text{m}$)			
گ	応力降下量 $\Delta \sigma_a = (S/S_a) \Delta \sigma$	24.9 MPa					
ХX		<四電: 13.3	MPa > (四電: 8.9~	-11.4 MPa)			
	平均すべり量 <i>D_a= 2D</i>	456 cm	n (四電:157 cm)			
	面槓 $S_{a1} = (16/22)S_a$ < $S_{a1} = (2/3)S_a >$	87.4 km ² <四電:122.3 km ² >	94.4 < 144.1 >	106.1 < 148.5 >			
~	地震モーメント M _{0a1}	$1.64 \times 10^{19} \text{ N} \cdot \text{m}$	1.84×10^{19}	2.20×10^{19}			
١ĥ	:下段 < > 内は四国電力	$< 2.26 \times 10^{19} \text{ N} \cdot \text{m} >$	$< 2.89 \times 10^{19} >$	$< 3.02 \times 10^{19} >$			
ج	: ト段() 内は四国電力	$(5.93 \times 10^{10} \text{ N} \cdot \text{m})$	(4.50×10^{10})	(8.75×10^{10})			
Ķ	心力阵下重 $\Delta \sigma_a = (S/S_a) \Delta \sigma$	24.9 MPa < 四電: 13.3 MPa >	< 13.3 >	< 13.3 >			
$1\tilde{J}$		(四電:10.1 MPa)	(四電:8.9)	(四電:11.4)			
紙	平均すべり量 $D_{a1}=M_{0a1}/(\mu S_{a1})$	470 cm	489	518			
		<四電:461 cm>	< 501 >	< 508 >			
		(四電:1/0 cm)	(四電:119)	(四電:206)			
	面積 $S_{a2} = (6/22)S_a$	32.8 km ²		39.8			
	$< S_{a1} = (1/3)S_a >$ 世堂エーメント M	<四电·01.2 km > 2 20 × 10 ¹⁸ N m		< 74.3 >			
\mathbf{k}	地展モークンド M_{0a2} ・下段 < \ 内は四国電力	$> 3.80 \times 10^{-5}$ N·m $< 7.98 \times 10^{18}$ N·m		5.05×10^{-3} < 1.07 × 10 ¹⁹ >			
IJŢ	:下段()内は四国電力	$(1.36 \times 10^{18} \text{ N} \cdot \text{m})$		(2.01×10^{18})			
2	応力降下量 $\Delta \sigma_a = (S/S_a) \Delta \sigma$	24.9 MPa		24.9			
K		<四電:13.3 MPa >		< 13.3 >			
5		(四電:10.1 MPa)		(四電:11.4)			
榮夫	平均すべり量 $D_{a2}=M_{0a2}/(\mu S_{a2})$	289 cm		317			
		<四電:326 cm>		< 359 >			
		(四電:104 cm)	10	(四電:126)			
	地震モーメント $M_{0b} = M_0 - M_{0a}$	<四電: 4.90×10	8.36 × 10 ¹⁹ N·m 0 ¹⁹ N·m> (四電:2.5	$87 imes 10^{19} extrm{ N} \cdot extrm{m}$)			
镇域	面積 $S_b = S - S_a$	<	1277.6 km ² 四電:1087.6 km ² >				
景急	平均すべり量 $D_b = M_{0b}/(\mu S_b)$		164 cm				
± ⊒ ∏		<四電:	113 cm > (四電:56	5 cm)			
	実効応力 $\sigma_b = 0.2\sigma_a$	~ Ⅲ蛋・97	5.0 MPa MPa 丶 (四雲 · 1 ♀-	$(2.3 MP_3)$			
		<四電:2.7 MPa > (四電:1.8~2.3 MPa)					

注:()内は四国電力のカスケードモデルによる値であり、<>内は四国電力の「スケーリング則+無限長地表垂直横ずれ 断層モデル」による値である.これらの記載がない欄では、これらの値が「レシピによるスケーリング則(*S_a/S* = 0.22 法)」による値と同じであることを示す.「レシピによるスケーリング則(A法)」については、表 19 で明らかなように、ア スペリティ面積が過大(*S_a/S* = 0.47)になり、現実的でないため記載していない.

ま 21 . 山山構造線断層 帯における	「動地前面海域の断層理(約421m)」	の断層巨さな亦再したケーフ
𝕂 ∠1. 甲犬柵坦秘附層市にわける	「敖地的曲徑域の個層件(ハリ42KIII)」	の附眉衣でを友史したり一人

	断層パラメータ	断層長さを 54kr	nとした場合	断層長さを 69km とした場合				
		A 法	$S_a/S = 0.22$ 法	A法 $S_a/S = 0.22$ 法				
	走向		N57E					
	傾斜角 θ		90 周	吏				
	断層長さ <i>L</i>	54 km (松田式	M7.7相当)	69 km (松田	日式 M7.9 相当)			
	断層幅 W		13.01	km				
	断層面積 $S = LW$	702.0 k	cm^2	897	7.0 km^2			
	断層上・下端深さ		2 km • 1	5 km				
	地震モーメント M ₀	$2.74 \times 10^{\circ}$	¹⁹ N·m	4.48 ×	$10^{19} \text{ N} \cdot \text{m}$			
	マグニチュード	M7.5, N	4 _w 6.9	M7.6	, M _w 7.0			
		(四電:M7.3,	M _w 6.9)	(四電:M	7.5, M _w 7.0)			
	平均すべり量 $D = M_0/(\mu S)$	97.6 c	cm	12	25 cm			
	剛性率 $\mu = \rho \beta^2$	4.00×10^{1}	10 N/m ²		司左			
	S 波速度 V_s (または β)	3.5 km	n/s		司左			
	平均破壞伝播速度 $V_r = 0.72V_s$	2.5 km	n/s		司左			
平均	国応力降下量 $\Delta \sigma = (7/16) M_0 (\pi/S)^{2/3}$	3.6 M	Pa	4.1 MPa				
		(四電:2.0	\mathbf{MPa}	(四电・J.I WIYa)				
	短周期レベルA	1.60×10 ⁻² (四雷:1.36×1	$0^{19} \text{ N} \cdot \text{m/s}^2$	(四電: 1.83×10^{-10} N·m/s ²)				
検	面積 $S = \pi r^2$	$187.6 \mathrm{km}^2$	154.4 km^2	282.3 km^2	197.3 km ²			
γ Ψ	地震モーメント $M_{0a} = \mu D_a S_a$	1.47×10^{19} N·m	1.21×10^{19}	2.62.5 km 2.82×10^{19}	1.97×10^{19}			
リテ	応力降下量 $\Delta \sigma_a = (S/S_a) \Delta \sigma$	13.4 MPa	16.3 MPa	12.9 MPa	18.4 MPa			
۲ ۲			(四電:11.8)		(四電:14.0)			
2	平均すべり量 <i>D</i> _a = 2D	195 cm	195 cm	250 cm	250 cm			
۲ الہ	面積 $S_{a1} = (16/22)S_a$	136.5 km ²	112.3 km ²	205.3 km^2	143.5 km^2			
	地震モーメント M _{0a1}	$1.19\times 10^{19}~{\rm N}{\cdot}{\rm m}$	9.81×10^{18}	2.29×10^{19}	1.60×10^{19}			
, Х	応力降下量 $\Delta \sigma_a = (S/S_a) \Delta \sigma$	13.4 MPa	16.3 MPa	12.9 MPa	18.4 MPa			
1			(四電:11.8)		(四電:14.0)			
策	平均すべり量 $D_{a1} = M_{0a1}/(\mu S_{a1})$	218 cm	218 cm	279 cm	279 cm			
イ	面積 $S_{a2} = (6/22)S_a$	51.2 km^2	42.1 km^2	77.0 km^2	53.8 km^2			
Ĩ,	地震モーメント M _{0a2}	$2.74 \times 10^{18} \text{ N} \cdot \text{m}$	2.25×10^{18}	5.26×10^{18}	$3.68 imes 10^{18}$			
, К	応力降下量 $\Delta \sigma_a = (S/S_a) \Delta \sigma$	13.4 MPa	16.3 MPa	12.9 MPa	18.4 MPa			
12)		101	(四電:11.8)		(四電:14.0)			
業	平均すべり量 $D_{a2} = M_{0a2}/(\mu S_{a2})$	134 cm	134 cm	171 cm	171 cm			
	地震モーメント $M_{0b} = M_0 - M_{0a}$	$1.28 \times 10^{19} \mathrm{N} \cdot \mathrm{m}$	1.54×10^{19}	1.66×10^{19}	2.51×10^{19}			
貢域	面積 $S_b = S - S_a$	514.4 km ²	547.6 km ²	614.7 km ²	699.7 km ²			
東	平均すべり量 $D_b = M_{0b}/(\mu S_b)$	62 cm	70 cm	67 cm	90 cm			
표 문	実効応力 $\sigma_b = 0.2\sigma_a$	2.7 MPa	3.3 MPa	2.6 MPa	3.7 MPa			
			(四電:2.4)		(四電:2.8)			

注: 「A 法」とは短周期レベルからアスペリティ総面積を求める方法で、「 $S_a/S = 0.22$ 法」とはアスペリティ総面積を断層面 積の 22 %に固定する方法である. 四国電力は「 $S_a/S = 0.22$ 法」を用いているが、断層平均応力降下量の計算には渡辺ら (1998) の「楕円クラックモデル」による式を用いている. そのため、断層平均応力降下量とアスペリティの平均応力降下量 が一貫して、レシピの円形クラックモデルによる値より小さくなっている. 短周期レベルもレシピの式 $A = 2.46 \cdot 10^{17} M_0^{1/3}$ ではなく、壇ら (2001) の式 $A = 4\pi r \Delta \sigma_a \beta^2$ および Broatwright(1988) の式 $M_0 = 16r^2 R \Delta \sigma_a / 7$ から得られる式 $A = 4\pi \alpha \sigma \beta^2 S/r$ に $S_a = \pi r^2 = 0.22S$ を適用して、 $A = 4\pi \alpha \sigma \beta^2 \sqrt{\pi S/0.22}$ から求めているようである. 当然の結果では あるが、楕円クラックモデルによる断層平均応力降下量がレシピの円形クラックモデルより小さめに設定されているた め、短周期レベルも少し小さめに出ている.

四国電力のマグニチュードも、レシピの武村 (1990)の式 M= $(1/1.17)(\log_{10} M_0[N \cdot m] - 10.72)$ ではなく武村 (1998)の式 M= $(1/1.2)(\log_{10} M_0[N \cdot m] - 10.7)$ を用いているため、気象庁マグニチュードだけ小さく設定されている.

表 22: 武村 (1998)[55] が解析に用いた断層モデルのデータ(地震名等は原典[38] にならい, Δσの値も記載した)

· /• •								
	M	タイプ	傾斜角	$L \mathrm{km}$	$W \mathrm{km}$	D cm	M_0 dyn \cdot cm	$\Delta\sigma$ MPa
1981.10.28 濃尾	8.0	横ずれ	90 °	85 *1	15 *1	380 *1	$1.5 \times 10^{27 * 1}$	4.0 ^(I)
1927.3.7 北丹後	7.3	横ずれ	64 °	33 * ²	19 * ²	370 *2	$4.6 \times 10^{26} *^2$	$10^{*2} (C)$
1930.11.26 北伊豆	7.3	横ずれ	90 °	22	12	300	$2.7 imes 10^{26}$	5.4 (D)
1943.9.10 鳥取	7.2	横ずれ	90 °	33	13	250	$3.6 imes 10^{26}$	8.3 (C)
1995. 1.17 兵庫県南部 * ³	7.2	横ずれ	86 °	25	15	220	2.5×10^{26}	—
1948. 6.28 福井地震	7.1	横ずれ	90 °	30	13	200	$3.3 imes10^{26}$	8.3 (C)
1961. 8.19 北美濃	7.0	斜めずれ	60 °	12	10	250	$9.0 imes 10^{25}$	16.0 (A+C)
1978. 1.14 伊豆大島近海 * ⁴	7.0	横ずれ	85 °	17	10	185	1.1×10^{26}	4.1 (D)
1931.9.21 西埼玉	6.9	横ずれ	80 °	20	10	100	$6.8 imes10^{25}$	4.3 ^(C)
1963.3.27 若狭湾	6.9	横ずれ	68 °	20	8	60	$3.0 imes 10^{25}$	3.2 ^(C)
1974.5.9伊豆半島沖	6.9	横ずれ	80 °	18 * ⁵	8 * 5	120	$5.9 imes10^{25}$	6.5 (C)
1939. 5. 1 男鹿 * ⁶	6.8	横ずれ	30 °	16	12	200	$1.7 imes 10^{26}$	7.0 ^(B)
1945. 1.13 三河	6.8	逆断層	30 °	12	11	225	$8.7 imes 10^{25}$	12.7 (A)
1984. 9.14 長野県西部	6.8	横ずれ	85 °	12	8	100	$2.9 imes 10^{25}$	3.2 ^(B)
1980. 6.29 伊豆半島東方沖	6.7	横ずれ	70 °	15 *7	7.5 * ⁷	110 *7	$7.0 \times 10^{25 * 7}$	—
1969.99岐阜県中部	6.6	横ずれ	90 °	18	10	64	$3.5 imes10^{25}$	1.5 ^(H)
1962.4.30 宮城県北部	6.5	逆断層	56 °	12 *8	10 *8	60	2.4×10^{25}	4.5 (G)
1935.7.11 静岡	6.4	横ずれ	70 °	11 *9	6 *9	100	2.2×10^{25}	7.0 ^(C)
1975.4.21 大分県中部	6.4	逆断層	70 °	10 *10	20 *10	32	$2.2 \times 10^{25 * 10}$	不明
1970.10.16 秋田県南東部	6.2	逆断層	46 °	15	11	28	1.4×10^{25}	1.5 ^(G)
1983.10.31 鳥取県中部	6.2	横ずれ	85 °	5	6	50	$4.5 \times 10^{24 * 11}$	—
1955.10.19 二ツ井	5.9	逆断層	64 °	15	4	20.5	4.1×10^{24}	—
1984. 5.30 山崎断層	5.6	横ずれ	90 °	3	5	8	$3.2 imes 10^{23}$	3.4 (G)
1934. 3.21 南伊豆	5.5	横ずれ	90 °	7	4	10	$9.5 imes10^{23}$	1.1 (C)
1976. 8.18 河津	5.4	横ずれ	82 °	9	3.5	20	$2.1 imes 10^{24}$	2.5 ^(C)
1968. 3.30 和歌山県西部	5.0	横ずれ	82 °	8	4	1.73	$1.9 imes 10^{23}$	$0.25^{(G)}$
1974.7.9 天城	4.9	横ずれ	90 °	3.5	3	9	$3.2 imes 10^{23}$	1.3 ^(C)
1968. 8.18 和歌山県西部	4.8	逆断層	90 °	6	3	1.58	$9.4 imes 10^{22}$	0.30 (G)
1969. 7. 9 和歌山県西部	4.4	横ずれ	68 °	3	3	0.71	$2.1 imes 10^{22}$	0.19 (G)
1970.1.28 和歌山県西部	4.3	横ずれ	90 °	2	4	0.76	2.0×10^{22}	$0.22^{(G)}$
1967. 9.29 和歌山県西部	4.2	斜めずれ	68 °	2.5	2	1.63	2.7×10^{22}	$0.59^{(G)}$
1969. 3.21 和歌山県西部	4.2	斜めずれ	90 °	4	8	0.22	$2.4 imes 10^{22}$	0.03 (G)
1970.11.23 和歌山県西部	3.8	斜めずれ	54 °	4	5	0.16	1.1×10^{22}	0.03 (G)

注: $\Delta \sigma$ の欄の (A)~(D), (G)~(I) は $\Delta \sigma$ を求める計算式の種類であり,断層運動のずれのタイプで異なる.

*1: 震源断層は連続する4セグメントと枝分かれ伏在の1セグメントからなり, L, W, D は枝分かれ断層を除く主断層の値で, M₀ は枝分かれ断層を含む全体の値(総断層面積もS = 約1700km²としている)である.連続4セグメントの「断層幅は 余震の深さ分布および理論的上下変動と水準測量データとの比較から15kmと推定」(上端深さは0km)したが,「5km程 度の誤差」があり,伏在セグメントは上端深さ2kmで幅13kmと推定されている[38].

- *2: 震源断層は離れた 2 セグメントの断層からなり, *L*, *W*, *D* は主断層の値. *M*₀ と *S*(= 約 460km²) の値については, Kanamori (1973) の 1 枚断層モデル (*L* = 35km, *W* = 13km, *D* = 300cm)[38] による値を用いている. Δσ もこのモデルによる.
- *3:原典にはデータがないため,武村は波形インバージョンによる武村 (1996)の結果を参考に M_0 を求め,断層面上のすべりの大きな部分から L,W を推定し, $\mu = 3 \times 10^{11}$ dyn/cm²として $D = M_0/(\mu LW)$ を求めている.この結果はすべり分布の平均とほぼ整合するとしている [55].
- *4:本震は第1震と6秒後の第2震からなり,第1震の震源断層についてのデータだけを記載している.第2震は第1震を後 方から追いかける形になっている.
- *5:余震の深さ分布が 3~11km であることから上端深さ 3km,幅 km と推定し,余震の長さが 5 月 12~16 日に 20km, 12~28 日に 24km であることから「本震直後の余震域は 20km より短かったものと想像」して L = 18km としている [38].

*6:男鹿地震は 1939.5.1 の 14:58(M6.8) と 15:00(M6.7) の 2 回起きているが,武村は最初の地震だけを取り出している.

- *7:余震分布から断層上端深さ 4km, *L*, *W* の値を推定. *D* と M_0 については, Takeo(1988) の断層モデル (上端深さ 0.5km, L = 20km, W = 12km)[38] を採用し, S = 240km² としている [55].
- *8: L および W は「本震および余震の震央分布と地割れや震災など地変の大きかった地域の広がりから推定」し、「地表に断層が現れなかったことから断層面上端の深さを 2km」としている [38].

*9:震源断層の上端を深さ 20km に置き,「被害分布の状況から断層の長さを推定し, 幅は長さの半分と仮定」している [38].

- *10: L と W の値は余震分布に基づき, M₀ については畑中他 (1988) の長周期 P 波記録の解析から得た逆断層モデル (L = W = 10km) の値 [38] を採用している.
- *11: 余震分布から *L*, *W*, *D* を求めているが,過去のどの断層モデルにも *M*₀ の値がないため,武村は $\mu = 3 \times 10^{11}$ dyn/cm² と 仮定して *M*₀ = μ *DLW* の値を求めている. ちなみに,表3 より大陸上部地殻では $\mu = \rho\beta^2 = 2.72$ g/cm³ · (3.45km/s)² = 3.24×10^{11} dyn/cm² であり,1943 鳥取地震の断層モデルでも $\mu = 3.4 \times 10^{11}$ dyn/cm² としている [38].
| 地震名 *1 | M _W | タイプ | 傾斜角 | $L \mathrm{km}$ | $W~{ m km}$ | 深さ km *2 | $D \operatorname{cm}$ | M_0 dyn·cm |
|--------------------------------|----------------|------|-------------|-----------------|-------------|-----------------|-----------------------|----------------------|
| 1992.6.28 Landers | 7.22 | 横ずれ | 90 ° | 69.0 | 15.0 | 0~15.0 | 269 | $7.5 	imes 10^{26}$ |
| 1978.9.16 Tabas | 7.14 | 逆断層 | 25 ° | 95.0 | 45.0 | 1.0~20.0 | 50 | 5.8×10^{26} |
| 1989.10.17 Loma Prieta | 6.95 | 斜めずれ | 70 ° | 40.0 | 18.0 | 3.4~20.3 | 166 | 3.0×10^{26} |
| 1995.1.17 兵庫県南部 * ³ | 6.9 | 横ずれ | 80 ° | 60.0 | 20.0 | $0.2 \sim 20.0$ | 67 | $2.4 	imes 10^{26}$ |
| | | | 85 ° | | | 0.2~20.1 | | |
| 1983.10.28 Borah Peak | 6.87 | 正断層 | 49 ° | 48.75 | 26.4 | $1.0 \sim 20.9$ | 47 | $2.3 	imes 10^{26}$ |
| 1985.12.23 Nahanni, N.W.T. | 6.75 | 逆断層 | 25 ° | 34.67 | 16.49 | 2.0~9.0 | 80 | $1.5 	imes 10^{26}$ |
| 1994.1.17 Northridge | 6.66 | 逆断層 | $40\degree$ | 18.0 | 21.0 | 5.0~21.4 | 74 | 1.1×10^{25} |
| 1985.10.5 Nahanni, N.W.T. | 6.63 | 逆断層 | 35 ° | 29.33 | 13.92 | 0.2~8.2 | 86 | $1.0 	imes 10^{26}$ |
| 1971.2.9 San Fernando | 6.53 | 逆断層 | 54 ° | 13.36 | 12.03 | 3.0~12.7 | 150 | 7×10^{25} |
| 1979.10.15 Imperial Valley | 6.43 | 横ずれ | 90 ° | 36.0 | 10.0 | 0.0~10.0 | 69 | 5×10^{25} |
| 1987.11.24 Superstition Hills | 6.33 | 横ずれ | 90 ° | 20.0 | 8.05 | 3.95~12.0 | 78 | $3.5 	imes 10^{25}$ |
| 1984.4.24 Morgan Hill | 6.18 | 横ずれ | 90 ° | 26.0 | 11.5 | 0.5~12.0 | 17 | 2.1×10^{25} |
| 1986.8.7 North Palm Springs | 6.14 | 斜めずれ | 46 ° | 20.0 | 13.3 | 4.0~13.63 | 17 | $1.8 	imes 10^{25}$ |
| 1987.10.1 Whittier Narrows | 5.97 | 逆断層 | 30 ° | 10.0 | 10.0 | 12.1~17.1 | 26 | 1×10^{25} |
| 1979.6.8 Coyote Lake | 5.66 | 横ずれ | 80 ° | 5.5 | 4.57 | 3.5~9.5 | 76 | 3.5×10^{24} |

表 23: Somerville et al.(1998)[53] が解析に用いた断層モデルのデータ

*1: Tabas は Iran, 兵庫県南部は日本, Borah Peak は Idaho, Nahanni, N.W.T. は Canada, その他は California での地震である.

*2:震源断層の上端深さ~下端深さを表し、断層幅 W は断層深さを sin (傾斜角) で割って得られる.

*3:兵庫県南部地震の上下2段になっている箇所の上段は野島側,下段は須磨/諏訪山側の断層に関するパラメータの値である.

地震発生日 地震発生地*1	M_s *2	$M_o \ [10^{20} { m N}{\cdot}{ m m}] \ {}^{*3}$	<i>L</i> [km]	<i>W</i> [km]	$S [\mathrm{km}^2]$	<i>D</i> [m]
1949 0822 Queen Charlotte	8.1	11	440	15	6600	5.7
1958 0710 Queen Charlotte	7.9	7.0	350	15	5250	4.8
1972 0730 Queen Charlotte	7.4	4.0	180	15	2700	5.0
1891 1027 Japan (濃尾地震)	8.0	1.5	80	15	1200	3.0
1992 0628 California	7.6	1.1	85	15	1275	2.9
1927 0307 Japan (北丹後地震)	7.4	0.46	33	19	627	3.7
1943 0910 Japan (鳥取地震)	7.2	0.36	33	10	330	2.6
1948 0628 Japan (福井地震)	7.1	0.33	23	10	230	2.5
1930 1126 Japan (北伊豆地震)	7.0	0.27	22	12	264	3.0
1978 0114 Japan (伊豆大島地震)	6.6	0.13	15	10	150	2.5
1980 0629 Japan	6.2	0.07	20	12	240	1.1
1931 0921 Japan	6.7	0.068	20	10	200	1.0
1974 0509 Japan	6.5	0.059	12	8	96	1.2
1990 0220 Japan	6.4	0.04	19	14	266	0.5
1969 0909 Japan	6.6	0.035	18	10	180	0.6
1986 0721 California	6.2	0.03	22	9	198	0.5
1963 0326 Japan	6.5	0.03	20	8	160	0.6
1984 0914 Japan	6.1	0.03	12	6	72	1.4

表 24: Fujii-Matsu'ura.(2000)[6] が解析に用いた断層モデルのデータ

*1: 壇ら (2011)[4] で回帰式に用いられている国内 6 地震を括弧内に地震名で記入した. 壇らはこれら 6 地震以外の国内 7 地 震は回帰に用いていないが,これら以外に 1995 年兵庫県南部地震,2000 年鳥取県西部地震,2005 年福岡県西方沖地震を 加えている.

*2:M_sは表面波マグニチュードである.

*3:1N·m= 10^7 dyn·cm である.

地震発生年 地震名	M, $M_{\rm W}$	L	$W_{\rm rup}$	$S_{\rm rup}$	S	W	M_o	A	$\Delta \sigma^{\# *2}$
		km	km	km ²	km ²	km	$10^{20} \mathrm{N} \cdot \mathrm{m}$	10^{19} N·m/s ²	bar
1891 濃尾	M8.0	80, 34	15, 13	1642	1368	12	1.5	-	37
1927 北丹後	M7.3	35	13	455	379	11	0.46	-	70
1930 北伊豆	M7.3	22	12	264	220	10	0.27	-	102
1943 鳥取	M7.2	33	13	429	358	11	0.36	-	61
1948 福井	M7.1	30	13	390	325	11	0.33	-	66
1978 伊豆大島	M7.0	17	10	170	142	8	0.11	-	81
1995 兵庫県南部	M7.3	60	20	1200	1000	17	0.18	1.62	6
2000 鳥取県西部	M7.3	26	14	364	303	12	0.0862	0.593	19
2005 福岡県西方沖	M7.0	24	20	480	400	17	0.115	1.09	16
国内平均		40.1	14.4	599	499	12.0			50.9
1906 San Franscisco	Mw 7.9	432	12	5148	4290	10	8.32	-	64
1976 Motagua	Mw 7.5	257	13	3341	2784	11	2.04	-	24
1976 Tangshan	Mw 7.6	70	24	1680	1400	20	2.77	-	66
1988 Langcang-Gengma	Mw 7.0	80	20	1600	1333	17	0.366	-	9
1990 Luzon Island	Mw 7.7	120	20	2400	2000	17	4.07	-	68
1992 Landers	Mw 7.3	69	15	1035	863	13	1.06	1.15	45
1997 Ardakul	Mw 7.2	100	15	1500	1250	13	0.735	-	20
1997 Manyi	Mw 7.5	175	15	2625	2188	13	2.23	-	34
1999 Kocaeli	Mw 7.6	141	23.3	3285.3	2738	19	2.88	3.05	35
1999 Hector Mine	Mw 7.1	74.27	20	1485.4	1238	17	0.598	-	16
1999 Duzce	Mw 7.1	49	24.5	1200.5	1000	20	0.665	-	23
2001 Kunlun	Mw 7.8	400	30	12000	10000	25	5.9	-	20
2002 Denali	Mw 7.8	292.5	18	5265	4388	15	7.48	-	57
海外平均		174	19.2	3274	2729	16.0			37.0
全体平均		119	17.2	2180	1817	14.4			42.7

表 25: 壇ら (2011)[4] が解析に用いた断層モデルのデータ*1

*1: 壇ら (2011)[4] は、国内平均、海外平均、全体平均を表記していないが、ここでは単純加算平均値を記載した.また、壇ら は、震源断層長さ L 以外の断層面積と断層幅については、破壊面積 S_{rup} と震源断層面積 S を区別し、破壊領域幅 W_{rup} と 震源断層幅 W を区別している.震源断層は地下 3km から地下 18km の間に広がると見なし、震源断層幅を $W_{max} = 15$ km と設定して地震データに回帰させてる。壇らは震源断層の $S \ge W$ の値を表記していないが、破壊面積を震源断層面積 に換算する式として $S = (15/18)S_{rup}$ を用いていることから、震源断層幅についても $W = (15/18)W_{rup}$ で求め表記した.

*2:壇らは応力降下量として,静的応力降下量 Δσ ではなく, Irie et al.(2010)[19] の動力学的断層破壊シミュレーション結果 を用いる関係上,動的平均応力降下量 Δσ[#]を用いている.前者は断層破壊の前後でのせん断応力の差になるが,後者は 断層破壊活動中のせん断応力の差であるため,後者のほうが大きいが,せん断応力のシミュレーションモデル上は両者に 差がないため,同じ値と見なしてよい.また, 1bar= 0.1MPa である.

壇らは短周期レベル A の値が得られている 5 地震について, $S - M_o$ 関係式から $\Delta \sigma = 34$ bar(3.4MPa), $W_{max} = 15$ km として震源断層モデルの面積 S_{model} および $L_{model} = S_{model}/W_{max}$ を求め, M_o , A, S_{model} (または L_{model}), $W_{max} = 15$ km, $\beta = 3.46$ km/s からアスペリティ平均動的応力降下量 $\Delta \sigma_a^{\#} = 122$ bar を求めている. そこで,同じ方法で実際に計算して みると,表 26 のように得られたが,その単純加算平均値は 150bar となった. 壇らは「平均的な値として 122bar が得ら れた」としているが,どのような平均かが不明である.

表 26: 壇ら (2011)[4] の方法に基づいて求めた震源断層モデルの面積 S_{model} , 断層長さ L_{model} , アスペ クト比 $L_{\text{model}}/W_{\text{max}}$ ($W_{\text{max}} = 15$ km) およびアスペリティ平均動的応力降下量 $\Delta \sigma_a^{\#}$

地震発生年 地震名	M_o	S	$L_{\rm model}$	$L_{\rm model}$	A	$\Delta \sigma_a^{\#}$
	10^{20} N·m	km ²	km	$W_{\rm max}$	10^{19} N·m/s ²	bar
1995 兵庫県南部	0.18	335	22.3	1.5	1.62	320
2000 鳥取県西部	0.086	215	14.3	1.0	0.593	67
2005 福岡県西方沖	0.115	257	17.1	1.1	1.09	190
1992 Landers	1.06	1070	71.3	4.8	1.15	50
1999 Kocaeli	2.88	2820	188	12.5	3.05	130